www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Aufleitung einer e-Funktion
Aufleitung einer e-Funktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufleitung einer e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:11 Fr 14.07.2006
Autor: CYBERSONIC

Hallo!

Ich verzweifle gerade an der Integration (Aufleitung) der folgenden e-Funktion:
[mm] e^{\bruch{-0.5\*x^{2}}{ \wurzel{2\*\pi}}} [/mm]
(wird bei mir ziemlich klein dargestellt, im Zähler steht minus ein halb mal x quadrat und im Nenner die Wurzel aus 2 mal pi)

Kann mir jemand bei der Lösung behilflich sein? Danke im voraus!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Aufleitung einer e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:57 Fr 14.07.2006
Autor: Event_Horizon

Kein Wunder, daß du daran scheiterst, dafür gibt es keine "normale" Lösung. Die Lösung ist die sogenannte Errorfunktion erf(x) , für die es keinen anderen algebraischen Ausdruck gibt.

Was du da vor dir hast, ist die Formel für die Gaußsche Fehlerverteilung. Sofern du von -oo bis +oo integrieren sollst, kannst du den Wert des Integrals duch Vergleiche ermitteln. Leider kann ich dir grade nicht genau sagen, was bei der Gaußverteilung was ist, vielleicht später.

Bezug
        
Bezug
Aufleitung einer e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Fr 14.07.2006
Autor: Event_Horizon

So, jetzt habe ich es:

[mm] $\bruch{A}{w\wurzel{\pi /2}}e^{-2\bruch{(x-x_c)^2}{w^2}}$ [/mm]

ist die Parametrisierung, die mein Statistikprogramm benutzt. w ist die Halbwertsbreite der Verteilung, also die Breite auf halber Höhe, und A ist die Fläche unter der Kurve, und zwar von -oo bis +oo.


Vergleichen wir mal:



[mm] $\bruch{-0.5}{ \wurzel{2*\pi}} =\bruch{-2}{w^2}$ [/mm]


[mm] $w=4\wurzel{2*\pi}$ [/mm]

Jetzt der Vorfaktor:

[mm] $1=\bruch{A}{w\wurzel{\pi /2}}=\bruch{A}{4\wurzel{2*\pi}\wurzel{\pi /2}}$ [/mm]


[mm] A=4\pi [/mm]


Dies ist - vermutlich - die Lösung deiner Aufgabe.


P.S.: Wenn die eine Formel hier zu klein ist, klicke sie einfach an! Neben dem Quelltext bekommst du dann auch eine vergrößerte Version zu sehen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]