www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - § Aufgaben zu Körpern
§ Aufgaben zu Körpern < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

§ Aufgaben zu Körpern: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 18:27 Mi 01.02.2006
Autor: Angrax

Hi,  bin froh dieses Forum gefunden zu haben, hoffentlich kann mir jemand helffen. Bräuchte möglichst Kompettlösungen zu folgenden 3 Aufgaben, da ich Zwar die Scheinklausur bestanden hab aber noch dringend die Punkte von diesem Übungsblatt benötige. Ich hoffe ihr könnt mir helfen...

Aufgabe 1:
Es seine A [mm] \in [/mm] M(3x3,K) und B [mm] \in [/mm] M(2x2,K) fest gegeben. Durch X [mm] \mapsto [/mm] A*X*B wird dann ein Endomorphismus [mm] \gamma [/mm] des K-VR M(3x2,K) gegeben. Man bestimme die Determinante von [mm] \gamma [/mm] .

Aufgabe 2:
Es sei V ein n-dimensionaler K-VR mit Basis( [mm] b_{1} [/mm] , ... , [mm] b_{n} [/mm] ). Durch
[mm] b_{i} \mapsto i\cdot{}b_{n-i+1} [/mm] (1 [mm] \le [/mm] i [mm] \le [/mm] n)
wird ein Element [mm] \gamma [/mm] von [mm] End_{K} [/mm] (V) gegeben. Man berechne det( [mm] \gamma) [/mm] ?

Aufgabe 3:
Es sei V ein n-dim. K-VR und [mm] \delta [/mm] : [mm] V^{n} \to [/mm] K eine determinantenform. Man zeige, daß es zu jedem [mm] \gamma \in End_{K} [/mm] (V) ein Körperelement [mm] s_{\gamma} [/mm] gibt, so daß für alle [mm] (a_{1} [/mm] , ... , [mm] a_{n} [/mm] ) [mm] \in V^{n} [/mm] gilt
[mm] \delta [/mm] ( [mm] a_{1} [/mm] , ... , [mm] a_{i-1} [/mm] , [mm] \gamma (a_{i} [/mm] ) , [mm] a_{i+1} [/mm] , ... , [mm] a_{n} [/mm] ) = [mm] s_{\gamma} [/mm] * [mm] \delta [/mm] ( [mm] a_{1} [/mm] , ... , [mm] a_{n} [/mm] )
Wie kann man [mm] s_{\gamma} [/mm] beschreiben durch die Einträge [mm] a_{ij} [/mm] einer Koordinatenmatrix A = [mm] A^{\gamma} (b_{1} [/mm] , ... , [mm] b_{n} [/mm] ; [mm] b_{1} [/mm] , ... , [mm] b_{n} [/mm] ) bzgl. einer Basis ( [mm] b_{1} [/mm] , ... , [mm] b_{n} [/mm] ) von V?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

mfg
Alex

        
Bezug
§ Aufgaben zu Körpern: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:45 Mi 01.02.2006
Autor: DaMenge

Hi Alex und [willkommenmr],

bitte poste eigene Ansätze !

Nach Komplettlösungen zu fragen ist ein bischen dreist, denn schließlich wollen wir helfen dir selbst zu helfen und nicht etwa die gesamte Arbeit für dich machen...

Also sag mal ein wenig mehr dazu !
siehe auch : die Forumsregeln

viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]