Aufgabe Vereinfachen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:55 Sa 09.09.2006 | Autor: | raignG |
Aufgabe | 3a-((-16x - 17 1/2a)-3 1/3a-13x-(4a+1/3x )) |
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: (http://www.matheboard.de/thread.php?threadid=38824.de/)
Hallo, super forum und sehr hilfreich.
ich habe folgendes problem und zar komme ich mit dieser aufgabe nicht zurecht. ich solle die aufgabe verienfachen nur leider hab ich keine ahnung wie ich das anstellen soll.
|
|
|
|
Hallo raignG!
> 3a-((-16x - 17 1/2a)-3 1/3a-13x-(4a+1/3x ))
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
> (http://www.matheboard.de/thread.php?threadid=38824.de/)
> Hallo, super forum und sehr hilfreich.
> ich habe folgendes problem und zar komme ich mit dieser
> aufgabe nicht zurecht. ich solle die aufgabe verienfachen
> nur leider hab ich keine ahnung wie ich das anstellen soll.
Ich schätze mal es geht um folgenden Term:
[mm] 3a\red{-[}\blue{(-16x-17\bruch{1}{2}a)}-3\bruch{1}{3}a-13x-\blue{(4a+\bruch{1}{3}x)}\red{]}
[/mm]
Bei solchen Aufgaben empfehle ich immer, daß man schrittweise von 'außen' nach 'innen' vereinfacht.
In deinem Fall hieße dies:
Löse zunächst die eckige Klammer [mm] \red{[...]} [/mm] auf. Bachte dabei, daß vor dieser Klammer ein [mm] '\red-' [/mm] steht, wodurch die Vorzeichen aller einzelnen Summanden in der Klammer umgekehrt werden müssen. Weiterhin musst du beachten, daß sich an dieser Stelle die Vorzeichen in den runden Klammern noch nicht umkehren. Das machen wir im nächsten Schritt. (Du könntest es jetzt schon machen, aber erfahrungsgemäß führt dies zu dem meistgemachten Fehler in der Mathemaik-dem Vorzeichenfehler.)
Du solltest erhalten:
[mm] 3a-\blue{(-16x-17\bruch{1}{2}a)}+3\bruch{1}{3}a+13x+\blue{(4a+\bruch{1}{3}x)}
[/mm]
Nun löst du die runden Klammern [mm] \blue{(...)} [/mm] auf. Auch hier sind wieder die Vorzeichen zu beachten. Bei einem '-' werden wieder alle Vorzeichen in der Klammer umgekehrt, bei einem '+' kann die Klammer einfach weggelassen werden.
Du solltest erhalten:
[mm] 3a+16x+17\bruch{1}{2}a+3\bruch{1}{3}a+13x+4a+\bruch{1}{3}x
[/mm]
Letztendlich hast du nur noch eine Summe vorliegen, bei der du gleichartige Summanden zusammenfassen kannst. Du musst nun also nur noch alle a und alle x jeweils zusammenrechnen und bist dann fertig.
Gruß,
Tommy
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:49 Sa 09.09.2006 | Autor: | raignG |
> Ich schätze mal es geht um folgenden Term:
>
> [mm]3a\red{-[}\blue{(-16x-17\bruch{1}{2}a)}-3\bruch{1}{3}a-13x-\blue{(4a+\bruch{1}{3}x)}\red{]}[/mm]
>
> Bei solchen Aufgaben empfehle ich immer, daß man
> schrittweise von 'außen' nach 'innen' vereinfacht.
> In deinem Fall hieße dies:
> Löse zunächst die eckige Klammer [mm]\red{[...]}[/mm] auf. Bachte
> dabei, daß vor dieser Klammer ein [mm]'\red-'[/mm] steht, wodurch
> die Vorzeichen aller einzelnen Summanden in der Klammer
> umgekehrt werden müssen. Weiterhin musst du beachten, daß
> sich an dieser Stelle die Vorzeichen in den runden Klammern
> noch nicht umkehren. Das machen wir im nächsten Schritt.
> (Du könntest es jetzt schon machen, aber erfahrungsgemäß
> führt dies zu dem meistgemachten Fehler in der
> Mathemaik-dem Vorzeichenfehler.)
> Du solltest erhalten:
>
> [mm]3a-\blue{(-16x-17\bruch{1}{2}a)}+3\bruch{1}{3}a+13x+\blue{(4a+\bruch{1}{3}x)}[/mm]
>
> Nun löst du die runden Klammern [mm]\blue{(...)}[/mm] auf. Auch hier
> sind wieder die Vorzeichen zu beachten. Bei einem '-'
> werden wieder alle Vorzeichen in der Klammer umgekehrt, bei
> einem '+' kann die Klammer einfach weggelassen werden.
> Du solltest erhalten:
>
> [mm]3a+16x+17\bruch{1}{2}a+3\bruch{1}{3}a+13x+4a+\bruch{1}{3}x[/mm]
>
> Letztendlich hast du nur noch eine Summe vorliegen, bei der
> du gleichartige Summanden zusammenfassen kannst. Du musst
> nun also nur noch alle a und alle x jeweils zusammenrechnen
> und bist dann fertig.
>
> Gruß,
> Tommy
alles klar soweit so gut danke für die antwort aber wie nehme ich jetzt die brüche zusammen?
und müsste das hier nicht ein - sein das letzte zeichen? > [mm]3a+16x+17\bruch{1}{2}a+3\bruch{1}{3}a+13x+4a+\bruch{1}{3}x[/mm]
|
|
|
|