www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathematik-Wettbewerbe" - Aufgabe #89 (IMC),(LinA)
Aufgabe #89 (IMC),(LinA) < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe #89 (IMC),(LinA): Übungsaufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 11:58 Mo 29.08.2005
Autor: Hanno

Hallo an alle!

Es seieb $V$ ein reeller Vektorraum mit $dim(V)=10$ und [mm] $U_1,U_2$ [/mm] Unterräume von $V$ mit [mm] $U_1\subset U_2$, $dim(U_1)=3, dim(U_1)=6$. [/mm] Es sei $E$ der Vektorraum aller linearer Abbildungen [mm] $f:V\to [/mm] V$ mit [mm] $f(U_1)\subseteq U_1, f(U_2)\subseteq U_2$. [/mm] Man bestimme $dim(E)$.


Liebe Grüße,
Hanno

        
Bezug
Aufgabe #89 (IMC),(LinA): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Do 01.09.2005
Autor: KaiAhnung

Hallo Hanno

> Es seieb [mm]V[/mm] ein reeller Vektorraum mit [mm]dim(V)=10[/mm] und [mm]U_1,U_2[/mm]
> Unterräume von [mm]V[/mm] mit [mm]U_1\subset U_2[/mm], [mm]dim(U_1)=3, dim(U_1)=6[/mm].
> Es sei [mm]E[/mm] der Vektorraum aller linearer Abbildungen [mm]f:V\to V[/mm]
> mit [mm]f(U_1)\subseteq U_1, f(U_2)\subseteq U_2[/mm]. Man bestimme
> [mm]dim(E)[/mm].

Sei [mm]u_{1,1},u_{1,2},u_{1,3}[/mm] eine Basis von [mm]U_1[/mm] und
[mm]u_{1,1},u_{1,2},u_{1,3},u_{2,1},u_{2,2},u_{2,3}[/mm] eine Basis von [mm]U_2[/mm]. Diese Basis lässt sich durch 4 weitere Vektoren [mm]v_1,v_2,v_3,v_4[/mm] zu einer Basis von V ergänzen.

Identifiziert man die Abbildungen aus E durch Darstellungsmatrizen, so lässt sich für E eine Basis aus Matrizen angeben, die jeweils eine 1 und ansonsten nur 0en enthalten.

Die Basisvektoren von [mm]U_1[/mm] werden dabei nur auf Basisvektoren von [mm]U_1[/mm] abgebildet. Hierfür ergeben sich [mm]3\cdot{}3=9[/mm] Matrizen.

[mm]u_{2,1},u_{2,2},u_{2,3}[/mm] werden auf Basisvektoren von [mm]U_2[/mm] abgebildet. Es ergeben sich [mm]3\cdot{}6=18[/mm] Matrizen.

[mm]v_1,v_2,v_3,v_4[/mm] werden auf Basisvektoren von V abgebiltet. Es ergeben sich weitere [mm]4\cdot{}10=40[/mm] Matrizen.

[mm]\dim(E)=9+18+40=67[/mm]

MfG
Jan

Bezug
                
Bezug
Aufgabe #89 (IMC),(LinA): Antwort
Status: (Antwort) fertig Status 
Datum: 11:44 Fr 02.09.2005
Autor: Stefan

Lieber Jan!

Das ist absolut richtig!!

Die Darstellungsmatrizen sind also notwendigerweise von der Form

[mm] $\pmat{x & x & x & x & x & x & x & x & x & x \\ x & x & x & x & x & x & x & x & x & x \\ x & x & x & x & x & x & x & x & x & x \\ 0 & 0 & 0 & x & x & x & x & x & x & x \\ 0 & 0 & 0 & x & x & x & x & x & x & x \\ 0 & 0 & 0 & x & x & x & x & x & x & x \\ 0 & 0 & 0 & 0 & 0 & 0 & x & x & x & x \\ 0 & 0 & 0 & 0 & 0 & 0 & x & x & x & x \\ 0 & 0 & 0 & 0 & 0 & 0 & x & x & x & x \\ 0 & 0 & 0 & 0 & 0 & 0 & x & x & x & x}$, [/mm]

und du hast systematisch die $x$en gezählt. ;-)

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]