Aufgabe #89 (IMC),(LinA) < Wettbewerbe < Schule < Mathe < Vorhilfe
|
Status: |
(Übungsaufgabe) Übungsaufgabe | Datum: | 11:58 Mo 29.08.2005 | Autor: | Hanno |
Hallo an alle!
Es seieb $V$ ein reeller Vektorraum mit $dim(V)=10$ und [mm] $U_1,U_2$ [/mm] Unterräume von $V$ mit [mm] $U_1\subset U_2$, $dim(U_1)=3, dim(U_1)=6$. [/mm] Es sei $E$ der Vektorraum aller linearer Abbildungen [mm] $f:V\to [/mm] V$ mit [mm] $f(U_1)\subseteq U_1, f(U_2)\subseteq U_2$. [/mm] Man bestimme $dim(E)$.
Liebe Grüße,
Hanno
|
|
|
|
Hallo Hanno
> Es seieb [mm]V[/mm] ein reeller Vektorraum mit [mm]dim(V)=10[/mm] und [mm]U_1,U_2[/mm]
> Unterräume von [mm]V[/mm] mit [mm]U_1\subset U_2[/mm], [mm]dim(U_1)=3, dim(U_1)=6[/mm].
> Es sei [mm]E[/mm] der Vektorraum aller linearer Abbildungen [mm]f:V\to V[/mm]
> mit [mm]f(U_1)\subseteq U_1, f(U_2)\subseteq U_2[/mm]. Man bestimme
> [mm]dim(E)[/mm].
Sei [mm]u_{1,1},u_{1,2},u_{1,3}[/mm] eine Basis von [mm]U_1[/mm] und
[mm]u_{1,1},u_{1,2},u_{1,3},u_{2,1},u_{2,2},u_{2,3}[/mm] eine Basis von [mm]U_2[/mm]. Diese Basis lässt sich durch 4 weitere Vektoren [mm]v_1,v_2,v_3,v_4[/mm] zu einer Basis von V ergänzen.
Identifiziert man die Abbildungen aus E durch Darstellungsmatrizen, so lässt sich für E eine Basis aus Matrizen angeben, die jeweils eine 1 und ansonsten nur 0en enthalten.
Die Basisvektoren von [mm]U_1[/mm] werden dabei nur auf Basisvektoren von [mm]U_1[/mm] abgebildet. Hierfür ergeben sich [mm]3\cdot{}3=9[/mm] Matrizen.
[mm]u_{2,1},u_{2,2},u_{2,3}[/mm] werden auf Basisvektoren von [mm]U_2[/mm] abgebildet. Es ergeben sich [mm]3\cdot{}6=18[/mm] Matrizen.
[mm]v_1,v_2,v_3,v_4[/mm] werden auf Basisvektoren von V abgebiltet. Es ergeben sich weitere [mm]4\cdot{}10=40[/mm] Matrizen.
[mm]\dim(E)=9+18+40=67[/mm]
MfG
Jan
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:44 Fr 02.09.2005 | Autor: | Stefan |
Lieber Jan!
Das ist absolut richtig!!
Die Darstellungsmatrizen sind also notwendigerweise von der Form
[mm] $\pmat{x & x & x & x & x & x & x & x & x & x \\ x & x & x & x & x & x & x & x & x & x \\ x & x & x & x & x & x & x & x & x & x \\ 0 & 0 & 0 & x & x & x & x & x & x & x \\ 0 & 0 & 0 & x & x & x & x & x & x & x \\ 0 & 0 & 0 & x & x & x & x & x & x & x \\ 0 & 0 & 0 & 0 & 0 & 0 & x & x & x & x \\ 0 & 0 & 0 & 0 & 0 & 0 & x & x & x & x \\ 0 & 0 & 0 & 0 & 0 & 0 & x & x & x & x \\ 0 & 0 & 0 & 0 & 0 & 0 & x & x & x & x}$,
[/mm]
und du hast systematisch die $x$en gezählt.
Liebe Grüße
Stefan
|
|
|
|