www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathematik-Wettbewerbe" - Aufgabe #77 (IMC),(Alg)
Aufgabe #77 (IMC),(Alg) < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe #77 (IMC),(Alg): Übungsaufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 17:24 Fr 29.07.2005
Autor: Hanno

Hallo an alle!

Es sei [mm] $G\subset GL_2(\IR)$ [/mm] die von den Matrizen [mm] $A=\pmat{2 & 0 \\ 0 & 1}, B=\pmat{1 & 1 \\ 0 & 1}$ [/mm] erzeugte Untergruppe von [mm] $GL_2(\IR)$. [/mm] Ferner sei [mm] $H\subset [/mm] G$ die Menge der Matrizen [mm] $\pmat{a_{11} & a_{12} \\ a_{21} & a_{22}}$ [/mm] aus $G$, für die [mm] $a_{11}=a_{22}=1$ [/mm] gilt.

(a) Man zeige, dass $H$ eine abelsche Untergruppe von $G$ ist.
(b) Man zeige, dass $H$ nicht endlich erzeugt ist.


Liebe Grüße,
Hanno

        
Bezug
Aufgabe #77 (IMC),(Alg): korrigiert
Status: (Frage) beantwortet Status 
Datum: 03:38 Mi 03.08.2005
Autor: Stefan

Lieber Hanno!

(a) Man kann sich überlegen, dass $H$ genau aus den Matrizen der Form

[mm] $\pmat{1 & a_{21} \\ 0 & 1}$ [/mm]

besteht, wobei [mm] $a_{21}$ [/mm] eine dyadische Zahl ist,

und wegen

[mm] $\pmat{1 & a_{21} \\ 0 & 1}^{-1} [/mm] = [mm] \pmat{1 & -a_{21} \\ 0 & 1} \in [/mm] H$

ist dies eine Untergruppe von $G$ (das neutrale Element ist ja auch enthalten).

2) Wegen

[mm] $\pmat{1 & a_{21} \\ 0 & 1} \cdot \pmat{1 & b_{21} \\ 0 & 1} [/mm] = [mm] \pmat{1 & a_{21} + b_{21} \\ 0 & 1}$ [/mm]

ist $(H, [mm] \circ)$ [/mm] kanonisch isomorph zu $(X,+)$, wobei $X$ die Menge der dyadischen Zahlen ist und letztere ist (natürlich) nicht endlich erzeugt.

Liebe Grüße
Stefan

Bezug
                
Bezug
Aufgabe #77 (IMC),(Alg): Antwort
Status: (Antwort) fertig Status 
Datum: 10:08 Mi 03.08.2005
Autor: Hanno

Hallo Stefan!

>Offenbar besteht $ H $ genau aus den Matrizen der Form

> $ [mm] \pmat{1 & a_{21} \\ 0 & 1} [/mm] $,

Dieses "Offenbar" finde ich nicht so offenbar, denn schließlich muss ja erst einmal erkannt werden, dass durch Linearkombination der Erzeugenden von $G$ alle Matrizen der Form [mm] $\pmat{1 & a_{21} \\ 0 & 1}$ [/mm] generiert werden können - wobei [mm] $a_{21}\in\IR$ [/mm] beliebig gewählt ist. Das wiederum liegt daran, dass wir durch linksseitige Multiplikation von [mm] $\pmat{2 & 1\\ 0 & 1}$ [/mm] die 1. Zeile in der rechts stehenden Matrix verdoppelt. Im Anschluss daran kann man durch linksseitige Multiplikation mit [mm] $\pmat{1 & 1 \\ 0 & 1}$ [/mm] eine 1 in die 1. Zeile bringen; Weiter noch können wir nun die entstandene Matrix rechtsseitig mit einer geeigneten Potenz von [mm] $\pmat{\frac{1}{2} & 0 \\ 0 & 1}$ [/mm] multiplizierne, um den Eintrag in der ersten Zeile und ersten Spalte zu normieren. So ist es möglich, für eine beliebige reelle Zahl [mm] $x\in \IR$ [/mm] durch Verwendung derer zwei adischen Darstellung [mit negativen Potenzen von 2, diese erhalten wir durch Multiplikation mit [mm] $\pmat{\frac{1}{2} & 0 \\ 0 & 1}$, [/mm] was als Inverses zu [mm] $\pmat{2 & 0 \\ 0 & 1}$ [/mm] auch in $G$ liegt] die Matrix [mm] $\pmat{1 & x \\ 0 & 1}$ [/mm] zu kombinieren. Und damit ist, wie du sagst, $(H,+)$ isomorph zu [mm] $(\IR,+)$ [/mm] und wir sind fertig.

Meintest du das so?


Liebe Grüße,
Hanno

Bezug
                        
Bezug
Aufgabe #77 (IMC),(Alg): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:24 Mi 03.08.2005
Autor: Stefan

Lieber Hanno!

Vielen Dank, dass du mich auf meinen peinlichen Fehler aufmerksam gemacht hast. Natürlich werden nur die $2$-adischen Zahlen erzeugt. Peinlich, peinlich, daher muss ich anders argumentieren. Ich verbessere meine Antwort jetzt mal...

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]