www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathematik-Wettbewerbe" - Aufgabe #61, (DeMO), GL
Aufgabe #61, (DeMO), GL < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe #61, (DeMO), GL: Übungsaufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 12:30 Mo 18.07.2005
Autor: Hanno

Hallo an alle!

Zu jeder natürlichen Zahl $n$ mit [mm] $n\geq [/mm] 2$ bestimme man alle diejenigen reellen Zahlen $x$, für die das Polynom

[mm] $f(x)=(x-1)^4+(x-2)^4+...+(x-n)^4$ [/mm]

seinen kleinsten Wert annimmt.

Zusatzfrage meinerseits: wie sieht es für beliebige Exponenten, d.h. für Polynome

[mm] $p_k(x)=(x-1)^k+...+(x-n)^k$ [/mm]

aus?


Liebe Grüße,
Hanno

        
Bezug
Aufgabe #61, (DeMO), GL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:58 Mo 18.07.2005
Autor: KaiAhnung

Hallo Hanno.

Sei [mm]x'=\frac{n+1}{2}[/mm] das arithmetische Mittel von 1,2,...,n.

Sei [mm]x=x'+r[/mm] mit [mm]r \in R[/mm].

Die Summenglieder [mm](x-j)^k[/mm] und [mm](x-(n+1-j))^k[/mm] nenne ich "komplementär" (nur aus Faulheit, nicht um das Ganze anspruchsvoll wirken zu lassen).

Sei [mm]y=x'-j[/mm], [mm]j \in \{1,2,...,n\}[/mm]

Es gilt:
[mm](x'+r-j)=\frac{n+1}{2}+r-j=y+r[/mm]
[mm](x'+r-(n+1-j))=\frac{n+1}{2}+r-n-1+j=j-\frac{n+1}{2}+r=-y+r[/mm]

Für ungerade k gleichen sich komplementäre Summenglieder bei r=0 genau aus. Gibt es ein Summenglied [mm](x'-j)^k[/mm] mit [mm]j=x'[/mm] (zu diesem existiert dann kein komplementäres Glied) so ist dieses 0. Für ungerade k ist das Polynom daher für [mm]x=x'[/mm] (betragsmäßig) minimal.

Für gerade k und r=0 sind komplementäre Summenglieder gleich.
Die Summe zweier komplementärer Glieder ist dann minimal. Beweis:
[mm]2y^k<(y+r)^k+(-y+r)^k=(y+r)^k+(y-r)^k=2y^k+\sum \limits_{i=1}^{k}{{k \choose i} (y^ir^{k-i}+y^i(-r)^{k-i})}[/mm].
In der Summe rechts sind die Glieder abwechselnd positiv und 0.

Kommt ein Summenglied [mm](x-j)^k[/mm] mit [mm]j=x'[/mm] vor, so ist dieses für r=0 ebenfalls minimal.

Das gesuchte x ist daher das arithmetische Mittel von 1,2,...,n

MfG
Jan

Bezug
                
Bezug
Aufgabe #61, (DeMO), GL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:21 So 14.08.2005
Autor: Stefan

Hallo Jan!

Damit du mal ein Feedback bekommst und die Frage nicht mehr als unbeantwortet gilt:

Alles korrekt! :-)

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]