Approximation durch Taylor < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:39 Mi 07.01.2015 | Autor: | Morph007 |
Aufgabe | Nähern Sie [mm] $\sin{10^0}$ [/mm] durch eine Taylorreihe bis einschließlich 5. Glied an. |
Kann ich das ganze einfach als Taylorreihe von [mm] \sinx [/mm] entwickeln und dann einfach [mm] $10^0 [/mm] = 1$ einsetzen?
|
|
|
|
> Nähern Sie [mm]\sin{10^0}[/mm] durch eine Taylorreihe bis
> einschließlich 5. Glied an.
> Kann ich das ganze einfach als Taylorreihe von [mm]\sinx[/mm]
> entwickeln und dann einfach [mm]10^0 = 1[/mm] einsetzen?
Sorry, aber ich frage mich nur, wer denn (seinen Studenten)
so doofe Aufgaben stellt. Es ist doch sofort klar, dass $\ [mm] 10^0\ [/mm] =\ 1$
und deshalb $\ [mm] sin(10^0)\ [/mm] =\ sin(1)$ .
Da die Taylorreihe für sin(x) wohl schon bekannt sein
dürfte, kann man dann die resultierende Reihe für sin(1)
auch sofort hinschreiben.
Falls da gemeint sein sollte, etwa mit einer Taylorreihe
für [mm] sin(10^x) [/mm] zu beginnen, müsste man sich um die Gesundheit
des Aufgabenstellers sorgen ...
LG
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:32 Mi 07.01.2015 | Autor: | Morph007 |
Ich glaube auch, dass es wirklich so einfach ist.
[mm] $10^x$ [/mm] hat er sicher nicht gemeint. Das ist eine alte Prüfungsaufgabe und in den Übungsaufgaben sollten wir z.B. auch die dritte Wurzel aus 9350 über eine Taylorreihe annähern, daher denke ich mal es ist tatsächlich so einfach.
Vermutlich wird da der "Stolperstein" für einige die [mm] $10^0$ [/mm] sein, die sie dann als ihr x in der Sinusreihe eben nicht als 1 nehmen, sondern den Exponenten der 10 entsprechend des x einsetzen.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:49 Mi 07.01.2015 | Autor: | fred97 |
> Nähern Sie [mm]\sin{10^0}[/mm] durch eine Taylorreihe bis
> einschließlich 5. Glied an.
> Kann ich das ganze einfach als Taylorreihe von [mm]\sinx[/mm]
> entwickeln und dann einfach [mm]10^0 = 1[/mm] einsetzen?
Ich vermute, dass mit [mm] 10^0 [/mm] nicht 1 gemeint ist, sondern 10 Grad (Gradmaß)
FRED
|
|
|
|
|
> Ich vermute, dass mit [mm]10^0[/mm] nicht 1 gemeint ist, sondern 10
> Grad (Gradmaß)
Ach ja, diese typographischen Feinheiten ...
Diese Interpretation hätte mir auch einfallen sollen. Sie
ergibt Sinn und eine vernünftige Aufgabestellung.
Auf meiner Tastatur und mit $\ T_EX$ gibt es immerhin die
Möglichkeit, zwischen 10° und $\ [mm] 10^{\,0}$ [/mm] (und allenfalls [mm] $10^{\,o}$ [/mm]
oder [mm] $10^{\,O}$ [/mm] ) zu unterscheiden.
LG , Al
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:25 Mi 07.01.2015 | Autor: | Morph007 |
Ich habs hier in gedruckter Form und im Exponenten der 10 ist definitiv ein Oval und kein Kreis, daher kann man das Grad ausschließen denke/hoffe ich.
|
|
|
|
|
> Ich habs hier in gedruckter Form und im Exponenten der 10
> ist definitiv ein Oval und kein Kreis, daher kann man das
> Grad ausschließen denke/hoffe ich.
Ja, wenn's gedruckt ist ...
Aber denk mal drüber nach, was alles sonst noch
piekfein gedruckt daher kommt ...
LG
|
|
|
|