www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Laplace-Transformation" - Anfangswertproblem
Anfangswertproblem < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:59 Mi 21.12.2011
Autor: DoubleHelix

Aufgabe
Lösen Sie folgende Anfangswertprobleme mit Hilfe der Laplace-Transformation:
y''+2y'+10y = H(t−1) und y(0) = y'(0) = 0, wobei H(t) = 0 für t < 0 und H(t) = 1
für t [mm] \ge [/mm] 0

Hallo,
Ich habe zuerst die Heaviside-Funktion transformiert.
und bekomme [mm] \bruch{1}{s} [/mm] heraus. Dannach habe ich den Verschiebungssatz angewandt. [mm] f(t-a)=e^{-a*s}*F(s) [/mm]
somit komme ich auf [mm] \bruch{e^{-s}}{s} [/mm]
Den Linken Teil der Gleichung nach F(s) aufgelöst ergibt:
[mm] F(s)*(s^2+2*s+10). [/mm] Der rückzutransformierende Term lautet somit:
[mm] e^{-s}*(\bruch{1}{s*(s^2+2*s+10)} [/mm]

Leider komme ich nicht auf einen geeignete Faktorisierung des Nenners.
Ich habe an [mm] (s+1)^2+9 [/mm] gedacht da ich dann einen ähnlichen Ausdruck wie für [mm] e^{b*t}*sinh(at) [/mm] erhalten würde.
wäre toll wenn mir jemand bei der Lösung des Problems helfen könnte.

mfg DoubleHelix

        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Mi 21.12.2011
Autor: MathePower

Hallo DoubleHelix,

> Lösen Sie folgende Anfangswertprobleme mit Hilfe der
> Laplace-Transformation:
>  y''+2y'+10y = H(t−1) und y(0) = y'(0) = 0, wobei H(t) =
> 0 für t < 0 und H(t) = 1
>  für t [mm]\ge[/mm] 0
>  Hallo,
>  Ich habe zuerst die Heaviside-Funktion transformiert.
>  und bekomme [mm]\bruch{1}{s}[/mm] heraus. Dannach habe ich den
> Verschiebungssatz angewandt. [mm]f(t-a)=e^{-a*s}*F(s)[/mm]
>  somit komme ich auf [mm]\bruch{e^{-s}}{s}[/mm]
>  Den Linken Teil der Gleichung nach F(s) aufgelöst
> ergibt:
>  [mm]F(s)*(s^2+2*s+10).[/mm] Der rückzutransformierende Term lautet
> somit:
>  [mm]e^{-s}*(\bruch{1}{s*(s^2+2*s+10)}[/mm]
>  
> Leider komme ich nicht auf einen geeignete Faktorisierung
> des Nenners.
>  Ich habe an [mm](s+1)^2+9[/mm] gedacht da ich dann einen ähnlichen
> Ausdruck wie für [mm]e^{b*t}*sinh(at)[/mm] erhalten würde.


Zerlege zunächst

[mm]\bruch{1}{s*(s^2+2*s+10)}=\bruch{A}{s}+\bruch{B*s+C}{s^2+2*s+10}[/mm]


> wäre toll wenn mir jemand bei der Lösung des Problems
> helfen könnte.
>  
> mfg DoubleHelix


Gruss
MathePower

Bezug
                
Bezug
Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:20 Mi 21.12.2011
Autor: DoubleHelix

Hallo,
Vielen Dank für deine Antwort!
Ich habe sie PBZ durchgeführt und komme auf:
[mm] \bruch{1}{10}*\bruch{1}{s}-\bruch{1}{10}*\bruch{s}{s^2+2*s+10}-\bruch{1}{5}*\bruch{1}{s^2+2*s+10}. [/mm]

Jetzt habe ich wieder den charakteristischen Term [mm] s^2+2*s+10, [/mm] bei dem ich einfach nicht auf die richtige Rücktransformation komme...

mfg

Bezug
                        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 16:45 Mi 21.12.2011
Autor: MathePower

Hallo DoubleHelix,

> Hallo,
>  Vielen Dank für deine Antwort!
>  Ich habe sie PBZ durchgeführt und komme auf:
>  
> [mm]\bruch{1}{10}*\bruch{1}{s}-\bruch{1}{10}*\bruch{s}{s^2+2*s+10}-\bruch{1}{5}*\bruch{1}{s^2+2*s+10}.[/mm]
>  
> Jetzt habe ich wieder den charakteristischen Term
> [mm]s^2+2*s+10,[/mm] bei dem ich einfach nicht auf die richtige
> Rücktransformation komme...
>  


Du kennst wahrscheinlich die Rücktransformationen von

[mm]\bruch{a}{s^{2}+a^{2}}, \ \bruch{s}{s^{2}+a^{2}}[/mm]

Um die Rücktransformation von [mm]\bruch{1}{\left(s+1\right)^{2}+9}[/mm] zu ermitteln,
ist der Dämpfungssatz zu verwenden.


> mfg


Gruss
MathePower

Bezug
        
Bezug
Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:41 Mi 21.12.2011
Autor: DoubleHelix

Hallo,
nach Anwendung des Dämpfungssatzes kommt man auf:
[mm] \bruch{1}{10}*H(t)-e^{-t}*(\bruch{1}{10}*cos(3*t)-\bruch{1}{15}*sin(3*t)). [/mm]
Wenn man Jetzt noch die Verschiebung durch den Ausdruck [mm] e^{-s} [/mm] berücksichtigt kommt man auf:
[mm] \bruch{1}{10}*H(t-1)-e^{-t-1}*(\bruch{1}{10}*cos(3*t-1)-\bruch{1}{15}*sin(3*t-1)) [/mm]

stimmt das so?

mfg

Bezug
                
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 20:43 Mi 21.12.2011
Autor: MathePower

Hallo DoubleHelix,

> Hallo,
>  nach Anwendung des Dämpfungssatzes kommt man auf:
>  
> [mm]\bruch{1}{10}*H(t)-e^{-t}*(\bruch{1}{10}*cos(3*t)-\bruch{1}{15}*sin(3*t)).[/mm]


Hier muss es doch lauten:

[mm]\bruch{1}{10}*H(t)-e^{-t}*(\bruch{1}{10}*cos(3*t)\blue{+}\bruch{1}{\red{30}}*sin(3*t)).[/mm]


>  Wenn man Jetzt noch die Verschiebung durch den Ausdruck
> [mm]e^{-s}[/mm] berücksichtigt kommt man auf:
>  
> [mm]\bruch{1}{10}*H(t-1)-e^{-t-1}*(\bruch{1}{10}*cos(3*t-1)-\bruch{1}{15}*sin(3*t-1))[/mm]
>  

Hier hast Du ein paar Klammern vergessen:

[mm]\bruch{1}{10}*H(t-1)-e^{-t-1}*(\bruch{1}{10}*cos(3*\left\blue{(}t-1\right\blue{)} \ )\blue{+}\bruch{1}{\red{30}}*sin(3*\left\blue{(}t-1\right\blue{)} \))[/mm]


> stimmt das so?
>  
> mfg


Gruss
MathePower

Bezug
                        
Bezug
Anfangswertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:10 Mi 21.12.2011
Autor: DoubleHelix

Vielen Dank!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]