www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Anfangswertproblem
Anfangswertproblem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:49 Fr 09.10.2009
Autor: DOmiJF

Aufgabe
Lösen sie foolgendes Anfangswertproblem:
y''-3y'+2y=0 , y(0)=2, y'(0)=0

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
ich weis nicht weiter bei der Aufgabe. bzw. mir fehlt ein SChema um die weiter zu lösen.
Bisher habe ich das Charakteristische Polynom
[mm] \lambda^2-3\lambda+2=0 [/mm] und die NS [mm] \lambda1=1 [/mm] und [mm] \lambda2=2 [/mm]
und bin zu der allg Lösung
[mm] y(x)=c1*e^x+c2*e^{2x} [/mm]
gekommen.
Jetzt weiß ich aber nicht, wie ich weiter vorgehen muss um auf die Lösung zu kommen.
Könntihr mir weiterhelfen?
Danke schon mal

Gruß
DOmi

        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Fr 09.10.2009
Autor: schachuzipus

Hallo DOmiFJ und herzlich [willkommenmr],

> Lösen sie foolgendes Anfangswertproblem:
>  y''-3y'+2y=0 , y(0)=2, y'(0)=0
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Hallo,
>  ich weis nicht weiter bei der Aufgabe. bzw. mir fehlt ein
> SChema um die weiter zu lösen.
>  Bisher habe ich das Charakteristische Polynom
> [mm]\lambda^2-3\lambda+2=0[/mm] [ok] und die NS [mm]\lambda1=1[/mm] und  [mm]\lambda2=2[/mm] [ok]
>  und bin zu der allg Lösung
>  [mm]y(x)=c1*e^x+c2*e^{2x}[/mm] [ok]
>  gekommen.
>  Jetzt weiß ich aber nicht, wie ich weiter vorgehen muss
> um auf die Lösung zu kommen.
>  Könntihr mir weiterhelfen?

Setze einfach die beiden Anfangsbedingungen ein:

(1) [mm] $y(0)=c_1\cdot{}e^0+c_2\cdot{}e^{2\cdot{}0}=c_1+c_2=2$ [/mm]

(2) $y'(0)=0$

Leite deine (allg.) Lösung ab, setze das Zeug da ein und du hast deine beiden Bestimmungsgleichungen, aus denen du [mm] $c_1, c_2$ [/mm] ermitteln kannst

>  Danke schon mal
>  
> Gruß
>  DOmi

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]