Alternativtest < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Hallo alle miteinander!
Ich erarbeite mir grad das Thema "Alternativtest" für einen Schülervortrag und sitze grad an einer Aufgabe, die ich irgendwie nicht kapiere! Vielleicht kann mir ja jemand helfen, wäre total lieb! Hier ist die Aufgabe:
Es handelt sich um die Heilungschance zweier Medikamente:
[mm] H_{0}: [/mm] Heilungschance [mm] p_{0}=0,4 [/mm] = althergebrachtes Medikament
[mm] H_{1}: [/mm] Heilungschance [mm] p_{1}=0,5 [/mm] = Kombinationsmedikament
Erstmal soll man die Situation als Urnenmodell mit 2 Urnen und je 20 Kugeln beschreiben. (Das ist ja noch einfach)
1.Urne: 8 Kugeln weiß (Heilungschance 0,4)
12 Kugeln schwarz (keine Heilungschance 0,6)
2.Urne: 10 Kugeln weiß (Heilungschance 0,5)
10 Kugeln schwarz (keine Heilungschance 0,5)
Nun soll man willkürlich eine Urne wählen und durch 10maliges Ziehen einer Kugel das Zufallsexperiment "Kombinationsmedikament" simulieren. Dananch soll man seine Entscheidung und sicher auch das Ergebnis anhand des wahren Inhalts der Urne prüfen!
Ich hab keine Ahnung was ich machen soll!!!!
|
|
|
|
Klar, dass du eine Urnenziehung mit Zurücklegen wählen musst (das Medikament weiß nicht, wie viele Patienten schon getestet wurden).
Stelle dir nun vor, du hättest aus jeder Urne 10 Ziehungen durchgeführt. Wie viele weiße Kugeln (Heilungen) erwartest du jeweils?
Glaubst du, dass diese Erwartungen wirklich eintreffen? Du hast z.B. 10 Heilungen gezogen. Wieso sollte das nicht trotzdem aus Urne H0 sein? H0 wäre auch bei 12 Heilungen möglich. Ab wieviele Heilungen würdest du darauf wetten, dass du die Urne H1 und nicht H0 erwischt hast?
Normalerweise spricht eine hohe Heilungszahl für Urne H1 und eine niedrige für H0. Wenn du auf 10 Ziehungen festgelegt bist, überlege dir Folgendes:
1. Fall: keine Heilung dabei. Das geschieht bei H0 in [mm] 0,6^{10} [/mm] = 0,006 = 0,6 % der Ziehungen, bei H1 aber in [mm] 0,5^{10} [/mm] =0,00098 = 0,1 % der Fälle. Da dies aber in Fall 1 geschehen ist und bei H0 etwa 6 mal so oft wie bei H1 vorkommt, entscheidest du dich dafür, dass H0 vorliegt, wobei deine Irrtumswahrscheinlichkeit aber etwa 1/7 = 14 % beträgt. (D.h.: Wenn ein Freund für dich permanent abwechselnd aus den Urnen H0 und H1 zieht und dir nur immer die Fälle "keine Heilung dabei" nennt und du immer auf Urne H0 tippst, hast du im Durchschnitt etwa 6 von 7 mal Recht).
2. Fall: Genau eine Heilung dabei. Bei H0: [mm] \vektor{10 \\1} [/mm] * [mm] 0,4^{1}*0,6^{9} [/mm] und bei H1 [mm] \vektor{10 \\1} [/mm] * [mm] 0,5^{1}*0,5^{9} [/mm] , also ein Verhältnis von [mm] (0,4^{1}*0,6^{9})/(0,5^{10})=4,13. [/mm] Von 5,13 Fällen ist ein Fall H1 und 4,13 Fälle H0, die Irrtumswahrscheinlichkeit für den Fall, dass man sich auch hier für H0 entscheidet, beträgt nun schon 19,5 % usw.
Die Irrtumswahrscheinlichkeit ist bei 9 Heilungen am größten und sinkt dann wieder, weil man sich ab 10 Heilungen ja wohl für H1 entscheiden wird. Sie ist viel zu hoch, um sinnvolle entscheidungen treffen zu können. Deshalb muss man viel mehr als 10 ziehungen durchführen, was die Irrtumswahrscheinlichkeit sinken lässt. (Im Fall 1 sinkt sie bei 20 Ziehungen auf ca. 2.5 %)
|
|
|
|
|
Guten Morgen,
vielen Dank für die sehr komplexe Antwort. Jedoch kann ich nicht alles nachvollziehen.
Ich habe gedacht, die gezogenen Kugeln sind Patienten, die entweder geheilt bzw. nicht geheilt sind durch das jeweilige Medikament!? Kann man das so auch sehen?
Ich meld mich nachher nochmal, da ich noch Fragen zu bestimmten Ergebnissen habe! Vielen lieben Dank schonmal!!!!!!!!!!!!!!!
|
|
|
|
|
Hi, sunflower,
> Ich habe gedacht, die gezogenen Kugeln sind Patienten, die
> entweder geheilt bzw. nicht geheilt sind durch das
> jeweilige Medikament!? Kann man das so auch sehen?
Freilich wird man das so sehen. Aber das widerspricht ja den Ausführungen von HJKweseleit nicht.
Hinweisen möchte ich auf zweierlei:
1. Das Experiment hat nur dann einen Sinn, wenn "mit Zurücklegen" gezogen wird.
2. Da die beiden Wahrscheinlichkeiten p=0,4 und p=0,5 sehr eng beisammen liegen, wird ein Test der Länge 10 (Erwartungswerte 4 bzw 5) kaum zu einem brauchbaren Ergebnis führen. (Darauf hat ja schon KJWeseleit hingewiesen). Da würd ich doch eher n=100 oder noch mehr vorschlagen.
Dazu nun meine Frage: Kennst Du nur die Binomialverteilung oder auch die NORMALverteilung als Näherung dafür?
|
|
|
|
|
Hallo Zwerglein,
bis jetzt hatte ich nur Beispiele, die man mit Binomialverteilung gerechnet hat! Kennst du vielleicht, unabhängig von meiner Ausgangsfrage, gute Seiten über Alternativtests im Netz?
Liebe Grüße sunflower
|
|
|
|
|
Hi, sunflower,
> Hallo Zwerglein,
> bis jetzt hatte ich nur Beispiele, die man mit
> Binomialverteilung gerechnet hat! Kennst du vielleicht,
> unabhängig von meiner Ausgangsfrage, gute Seiten über
> Alternativtests im Netz?
> Liebe Grüße sunflower
>
Da ich eigentlich lieber mit Büchern arbeite, habe ich nicht so viele Internetseiten "parat". Hier mal zwei, von denen ich glaube, dass sie Dir helfen könnten:
www.mathe-aufgaben.de/mathehilfen/mathe-abitur/Stochastik/35101%20Sto%2012%20Tests%201%20S.pdf (Du hast doch Acrobat Reader?!)
www.learn-line.nrw.de/angebote/selma/foyer/projekte/hennproj/henn2/Einfuehrung_in_die_beurteilende_Statistik_10.htm
|
|
|
|
|
Vielen lieben Dank, ich schau nachher gleich mal nach. Mein Vortrag ist zwar schon fast fertig, aber ich will mich noch ein bisschen belesen und Beispiele rechnen!
Dankeschön!!!!!!!!!!!!! )))))
Liebe Grüße Sunflower
|
|
|
|
|
Hallo nochmal,
bin grad dabei die Aufgabe zurechnen!
Bei Urne 1 (H0) erwarte ich z.B. 4 weiße und 6 schwarze Kugeln auf grund der Wahrscheinlichkeiten von p=0,4 und q=0,6.
Bei Urne 2 (H1) erwarte ich sowohl 10 weiße als auch 10 schwarze Kugeln, da p=q=0,5 ist!
> Glaubst du, dass diese Erwartungen wirklich eintreffen? Du
> hast z.B. 10 Heilungen gezogen. Wieso sollte das nicht
> trotzdem aus Urne H0 sein? H0 wäre auch bei 12 Heilungen
> möglich. Ab wieviele Heilungen würdest du darauf wetten,
> dass du die Urne H1 und nicht H0 erwischt hast?
Wenn ich 10 Heilungen (weiße Kugeln) gezogen hätte, dann wäre das meiner Meinung nur bei H1 möglich, wenn sich in der Urne H0 8 weiße (=Heilung) und 12 schwarze (keine Heilung) Kugeln befinden.
Ich würde bei 5 gezogenen weißen Kugeln auf H1 tippen (=Kombinationsmedikament), aufgrund der Wahrscheinlichkeiten?!
|
|
|
|
|
Hi, sunflower,
also, ich glaube, ich zeig' Dir jetzt mal den üblichen "Ablauf" bei einem solchen Alternativtest. Nehmen wir an, Du hast
H0: p=0,4 und H1: p=0,5 als Alternativhypothesen.
Testgröße T ist die Anzahl der (wie gesagt: mit Zurücklegen) aus EINER der Urnen gezogenen weißen Kugeln bei 10-maligem Ziehen.
Annahmebereich von H0: {0;...4}
Annahmebereich von H1: {5;...10}
Berechnung der Fehlerwahrscheinlichkeiten:
Für den Fehler 1.Art [mm] (\alpha-Fehler):
[/mm]
[mm] \alpha' [/mm] = [mm] \summe_{i=5}^{10}\vektor{10 \\ i}*0,4^{i}*0,6^{10-i} [/mm] = 1 - [mm] F_{10;0,4}(4) [/mm] = 1 - 0,633 = 0,367. (Tafelwerk!)
Für den Fehler 2.Art [mm] (\beta-Fehler):
[/mm]
[mm] \beta' [/mm] = [mm] \summe_{i=0}^{4}\vektor{10 \\ i}*0,5^{i}*0,5^{10-i} [/mm] = [mm] F_{10;0,5}(4) [/mm] = 0,377. (wieder Tafelwerk!)
Wie ich Dir schon angedeutet habe, sind beide Fehler auf Grund der sehr kurzen Kettenlänge (10) recht groß.
Nur um Dir einen "besseren" Test zu zeigen, rechne ich alles nochmals mit n=100, wobei ich diesmal vorschlagen würde:
Annahmebereich für H0: {0; .....; 44}
Annahmebereich für H1: {45; ...; 100}
Berechnung der Fehlerwahrscheinlichkeiten für diesen Test:
Für den Fehler 1.Art [mm] (\alpha-Fehler):
[/mm]
[mm] \alpha' [/mm] = [mm] \summe_{i=45}^{100}\vektor{100 \\ i}*0,4^{i}*0,6^{100-i} [/mm] = 1 - [mm] F_{100;0,4}(44) [/mm] = 1 - 0,9754 = 0,0246. (Tafelwerk!)
Für den Fehler 2.Art [mm] (\beta-Fehler):
[/mm]
[mm] \beta' [/mm] = [mm] \summe_{i=0}^{44}\vektor{100 \\ i}*0,5^{i}*0,5^{100-i} [/mm] = [mm] F_{100;0,5}(44) [/mm] = 0,01764. (wieder Tafelwerk!)
Du merkst: Die Fehlerwahrscheinlichkeiten sind wesentlich kleiner!
|
|
|
|
|
Hallo Zwerglein,
vielen Dank, dass du dir die Mühe gemacht hast, mir das nochmal genau vorzurechnen. Eine winzig kleine Frage hätte ich da aber noch: Warum rechne ich beim Fehler 1. Art das Gegenereignis aus, also 1-F?
Liebe Grüße sunflower86
|
|
|
|
|
Hi, sunflower,
> Hallo Zwerglein,
> vielen Dank, dass du dir die Mühe gemacht hast, mir das
> nochmal genau vorzurechnen. Eine winzig kleine Frage hätte
> ich da aber noch: Warum rechne ich beim Fehler 1. Art das
> Gegenereignis aus, also 1-F?
>
Nun: Da ich gerne mit dem Tafelwerk arbeite (sonst würde so mancher Test zu einer ewigen Rechnerei!) und da im Tafelwerk die Werte der Binomialverteilung VON UNTEN NACH OBEN (also von 0 bis zu einem Wert k) aufsummiert werden. Wenn Du also eine Summe hast, die irgendwo (sagen wir: bei k+1) beginnt und bei der maximalen Trefferzahl (Kettenlänge n) endet, musst Du über das Gegenereignis rechnen!
Beispiel: [mm] \summe_{i=6}^{20}\vektor{20 \\ i}*0,2^{i}*0,8^{20-i}
[/mm]
= 1 - [mm] F_{20;0,2}(5) [/mm] = 1 - 0,80421 = 0,19579
Ach ja, Rückfrage:
Über die Interpretation der Fehlerwahrscheinlichkeiten bist Du Dir im Klaren?
Wenn nicht: Frag' ruhig nach!
|
|
|
|
|
Guten morgen Zwerglein,
danke für die Antwort. Ich hab mich schon die ganze Zeit gefragt, wie man die Werte in der Tabelle für summierte Binomialverteilung abliest, wenn man nicht mit k=0 anfängt! Jetzt weiß ich es ja! Danke!!!!!
Das mit den Fehlern 1. und 2. Art ist mir klar:
Fehler 1. Art: Die Hypothese H0 wird nicht angenommen, obgleich sie wahr ist
Fehler 2. Art: Die Hypothese H1 wird nicht angenommen, obgleich sie wahr ist
Liebe Grüße und Frohe Ostern sunflower86
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:52 Sa 26.03.2005 | Autor: | Zwerglein |
Hi, sunflower,
alles klar! Und wenn noch was sein sollte, ...
Ansonsten: Schöne Ostern!
|
|
|
|
|
> Bei H0: $ [mm] \vektor{10 \\1} [/mm] $ * $ [mm] 0,4^{1}\cdot{}0,6^{9} [/mm] $ und bei H1 $ [mm] \vektor{10 \\1} [/mm] $ * $ [mm] 0,5^{1}\cdot{}0,5^{9} [/mm] $ , also ein Verhältnis von $ [mm] (0,4^{1}\cdot{}0,6^{9})/(0,5^{10})=4,13. [/mm] $ Von 5,13 Fällen ist ein Fall H1 und 4,13 Fälle H0, die Irrtumswahrscheinlichkeit für den Fall, dass man sich auch hier für H0 entscheidet, beträgt nun schon 19,5 % usw.
Ich verstehe nicht warum, ich [mm] (0,4^{1}\cdot{}0,6^{9})/(0,5^{10}) [/mm] rechnen muss. Das andere ist mir soweit ganz klar, auch die Ergebnisse und die Vorgehensweise! Aber warum muss ich hier : [mm] (0,5^{10}) [/mm] rechnen?
|
|
|
|
|
Hi, sunflower,
ich geh' mal davon aus, dass die Frage für Dich mittlerweile erledigt ist!
|
|
|
|