www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Allgemeine Beweisregeln
Allgemeine Beweisregeln < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Allgemeine Beweisregeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 So 04.11.2007
Autor: jokerose

Aufgabe
Gegeben ist nur die Folge [mm] \bruch{\wurzel[n]{n}}{n}. [/mm]

Ich habe eher eine allgemeine Frage zu Beweismethoden:

Ich möchte jetzt mal Beweisen, dass diese Folge eine Nullfolge ist. Wäre zum Beispiel dieser Ablauf erlaubt:

Ich stelle die Behauptung auf, dass diese Folge gegen 0 konvergiert. Also ist diese eine Nullfolge. [mm] \Rightarrow [/mm] Folge konvergiert.
Da die Folge konvergiert, kann ich schreiben:

[mm] \limes_{n\rightarrow\infty} \bruch{\wurzel[n]{n}}{n} [/mm] = [mm] \bruch{\limes_{n\rightarrow\infty} \wurzel[n]{n}}{ \limes_{n\rightarrow\infty}n}. [/mm]
Und das ist dann logischerweise 0.

Ist dieser Ablauf korrekt. Müsste ich dazu nicht zuerst mal beweisen, dass die Folge konvergiert, bevor ich eine Beziehung brache, welche die Konvergenz voraussetzt?
Jetzt kommt meine eigentliche Frage:
Darf man im Allgemeinen eine Beziehung brauchen, die nur direkt aus der Behauptung folgt?

        
Bezug
Allgemeine Beweisregeln: Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 So 04.11.2007
Autor: Hund

Hallo,

allgemein gilt, dass man bei direkten Beweisen von nichts ausgehendarf, was man nicht bewiesen hat. Bei deinem Ablauf brauchst du deine Zusatzbehauptung gar nicht. Der Zähler konvergiert gegen 1. Der Nenner gegen Unendlich. Für solche Fälle gibt es einen Satz, der besagt, das der Quotient dann eine Nullfolge ist.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
                
Bezug
Allgemeine Beweisregeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:59 So 04.11.2007
Autor: jokerose

Ja das ist gut so.
Vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]