Achsensymmetrie < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 17:07 Fr 08.05.2009 | Autor: | Hungry-WiTi |
Aufgabe | Es seien g echte Teilmenge E, Sg die zugehörige Geradenspiegelung und M Teilmenge E eine nichtleere Teilmenge.
M heißt achsensymmetrisch bzgl. g, wenn für alle P(e)M gilt Sg(e)M.
Es bezeichne M':={P'(e)E | P'=Sg(P), P(e)M} das Spiegelbild von M bzgl. g.
a) Zeigen Sie: M ist achsensymmetrisch bzgl. g, wenn M=M'.
b) Es sei f:[a,b]-->R eine reele Funktion. Die Menge Gf:={(x,y)(e)R²|y=f(x),x(e)[a,b]} heißt der Graph von f.
Für x(e)[-1,1], n=16 und av(e)R (v=0,...,n) sei f(x):= Summe(v=0 bis 8) a2vx2v.
Zeigen Sie: Der Graph von f ist achsensymmetrisch bzgl. der y-Achse.
|
Hallo!
Leider habe ich keinerlei Idee, was da von mir gefordert ist... Freue mich über jede Hilfestellung!
|
|
|
|
> . Freue mich über jede Hilfestellung!
Hallo,
dies ist Dein 17. Beitrag im Forum, und Du solltest Dich im eigenen Interesse mit der Eingabe der Formeln vertraut machen. Eingabehilfen findet man unterhalb des Eingabefensters.
Die Aufgabe wurde heute hier erneut gepostet - und zwar leserlich, weswegen ist geraten ist, eine etwaige Diskussion dort zu führen.
Gruß v. Angela
|
|
|
|