www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Abzählbarkeit, Häufungspunkte
Abzählbarkeit, Häufungspunkte < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abzählbarkeit, Häufungspunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 Mi 17.11.2010
Autor: LoBi83

Aufgabe
(a) Es sei A eine überabzählbare Menge und B eine abzählbare Untermenge.
Zeigen Sie, dass A [mm] \backslash [/mm] B überabzählbar ist.
Hinweis: Machen Sie einen Widerspruchsbeweis.

(b) Es sei A eine abzählbare Teilmenge von [mm] \IR. [/mm] Zeigen Sie, dass die
Menge der Häufungspunkte von [mm] \IR\backslash [/mm] A ganz [mm] \IR [/mm] ist

Könnte hier Hilfe gebrauchen:
zu a)
Angenommen: A [mm] \backslash [/mm] B wäre abzählbar dann existiert eine surjektive Abbildung f: [mm] \IN \to A\backslash [/mm] B.
Also ist A [mm] \backslash [/mm] B={f(1),f(2),...}

f(n) [mm] \in A\backslash [/mm] B [mm] \Rightarrow [/mm] f(n) [mm] \in [/mm] A [mm] \wedge [/mm] f(n) [mm] \not\in [/mm] B
f bildet also nur auf A ab. A ist aber überabzählbar, es existiert also keine surjektive Abbildung die auf A abbildet.

Das wäre mein Ansatz zur a)

        
Bezug
Abzählbarkeit, Häufungspunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 Mi 17.11.2010
Autor: abakus


> (a) Es sei A eine überabzählbare Menge und B eine
> abzählbare Untermenge.
>  Zeigen Sie, dass A [mm]\backslash[/mm] B überabzählbar ist.
>  Hinweis: Machen Sie einen Widerspruchsbeweis.

Hallo,
es ist A= (A [mm]\backslash[/mm] B) [mm] \cap [/mm] B.
wäre  A [mm]\backslash[/mm] B abzählbar, so müsste A als Vereinigung zweier abzählbarer Mengen abzählbar sein.
Gruß Abakus

>  
> (b) Es sei A eine abzählbare Teilmenge von [mm]\IR.[/mm] Zeigen
> Sie, dass die
>  Menge der Häufungspunkte von [mm]\IR\backslash[/mm] A ganz [mm]\IR[/mm]
> ist
>  Könnte hier Hilfe gebrauchen:
>  zu a)
> Angenommen: A [mm]\backslash[/mm] B wäre abzählbar dann existiert
> eine surjektive Abbildung f: [mm]\IN \to A\backslash[/mm] B.
> Also ist A [mm]\backslash[/mm] B={f(1),f(2),...}
>  
> f(n) [mm]\in A\backslash[/mm] B [mm]\Rightarrow[/mm] f(n) [mm]\in[/mm] A [mm]\wedge[/mm] f(n)
> [mm]\not\in[/mm] B
>  f bildet also nur auf A ab. A ist aber überabzählbar, es
> existiert also keine surjektive Abbildung die auf A
> abbildet.
>  
> Das wäre mein Ansatz zur a)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]