www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Abschätzung Erwartungswert
Abschätzung Erwartungswert < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung Erwartungswert: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:22 Sa 14.05.2011
Autor: poiuzt

Aufgabe
Es seien m [mm] \ge [/mm] n [mm] \ge [/mm] 1 und X eine nichtnegative Zufallsvariable. Beweisen sie:
a) [mm] E(X^m)^n \ge E(X^n)^m [/mm]
b) [mm] E(X^m) \ge E(X^n)E(X^{m-n}) [/mm]
c) angenommen [mm] X_1, [/mm] .., [mm] X_n [/mm] sind u.i.v Zufallsvariablen und 1 [mm] \le j_1 \le [/mm] ... [mm] \le j_m \le [/mm] n. Dann gilt: [mm] \left| E(X_{j_1}\cdot \cdot \cdot X_{j_m}) \right| \le [/mm] E [mm] \left| (X_1)^m \right| [/mm]

Hallo,
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich komme bei den Beweisen leider auf keine Hilfreiche Idee.
Die Teilaufgabe a) müsste meines Wissens mit der JEnsen-Ungleichung gelöst werden können. Aber leider funktioniert es bei mir nicht.
Die b) kann mit a) gelöst werden. Mein Ansatz war: [mm] E(X^m)=E(X^{m-n}X^n) [/mm]  = ... Jetzt müsste ja die Ungleichung aus a) angewandt werden, da ich ja den Erwartungswert nicht auseinanderziehen darf, oder? Aber wie kann ich hier a) erfolgreich anwenden?
Zu c) : hier kann ich doch den EW auf der linken Seite auseinanderziehen (X sind unabh.) und da die X identisch verteilt sind, sind doch alle EWe gleich. d.h. ich komme auf:
linke Seite = [mm] \left| (E(X_1))^m \right| \le \left| E(X_1)^m \right| [/mm] (mit Jensen-Ungl.) und dann nur noch den Betrag reinziehen. Stimmt das so?
Vielen Dank für jegliche Hilfe,
Grüße

        
Bezug
Abschätzung Erwartungswert: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 So 22.05.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]