www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Ableitungen Existenz von Punkt
Ableitungen Existenz von Punkt < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen Existenz von Punkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:53 Do 31.05.2007
Autor: ttgirltt

Aufgabe
Sei
[mm] h(x)=\begin{cases} x^{2}, & x<0 \mbox{ } \\ 0, & x\ge 0 \mbox{ } \end{cases} [/mm]

Sei g : [0,4] [mm] \to \IR^2 [/mm] gegeben durch g(t) =(h(t − 2),h(2 − t)).
Zeigen Sie: Es gibt kein [mm] p\in[0, [/mm] 4] mit g(4)−g(0)=4g'(p).

Hallo,

die Aufgabe soll doch reines Nachrechnen darstellen oder?

Ich bin mir nur nicht sicher wie ich das genau mache.
[mm] g(4)-g(0)=h(-2)-h(2)=x^{2}-0=4*(h(p-2),h(2-p))' [/mm]

Muss ich jetzt ne Fallunterscheidung für P machen?
p=2 [mm] \Rightarrow [/mm] 4*(h(p-2),h(2-p))'=0
p<2 [mm] \Rightarrow [/mm] 4*(h(p-2),h(2-p))'=4*(2x,0)
p>2 [mm] \Rightarrow [/mm] 4*(h(p-2),h(2-p))'=4*(0,2x)

Oder wie??



        
Bezug
Ableitungen Existenz von Punkt: Antwort
Status: (Antwort) fertig Status 
Datum: 21:37 Do 31.05.2007
Autor: Gonozal_IX

Hiho,

irgendwie vergisst du die ganze Zeit, daß g nach [mm] \IR^2 [/mm] abbildet, d.h. du kriegst da Vektoren und nicht nur Zahlen, wie dies bei dir der Fall ist.

[mm]g(4) - g(0) = (h(2),h(-2)) - (h(-2),h(2)) = \vektor{h(2) - h(-2) \\ -(h(2) - h(-2))}[/mm]

Überlege dir nun, wie g' aussieht, kommst dann alleine weiter?

Bezug
                
Bezug
Ableitungen Existenz von Punkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 Do 31.05.2007
Autor: ttgirltt

Oh ja natürlich [mm] \IR^{2}! [/mm]
Mh also:
[mm] \vektor{h(2) - h(-2) \\ -(h(2) - h(-2))} [/mm] = [mm] \vektor{0-x^{2}\\ -0-x^{2}} [/mm] = [mm] \vektor{-x^{2}\\ -x^{2}} =4*\vektor{h(p-2) \\ h(2-p))} [/mm]

Mh nun hab ich das richtig überlegt mit den Fällen?
p=2  4*(h(p-2),h(2-p))'=0
p<2  4*(h(p-2),h(2-p))'=4*(2x,0)
p>2  4*(h(p-2),h(2-p))'=4*(0,2x)

ich glaub nicht weil ne Gleichheit erreicht man so nicht.


Bezug
                        
Bezug
Ableitungen Existenz von Punkt: Antwort
Status: (Antwort) fertig Status 
Datum: 09:20 Fr 01.06.2007
Autor: Gonozal_IX

Hiho,

> [mm]\vektor{h(2) - h(-2) \\ -(h(2) - h(-2))}[/mm] =
> [mm]\vektor{0-x^{2}\\ -0-x^{2}}[/mm] = [mm]\vektor{-x^{2}\\ x^{2}} =4*\vektor{h(p-2) \\ h(2-p))}[/mm]

Hiho,

wie schummelst du da das [mm] x^2 [/mm] rein? ;-)
Der Vektor ist ein Vektor den du direkt ausrechnen kannst.

Zur Kontrolle:

[mm]\vektor{h(2) - h(-2) \\ -(h(2) - h(-2))} = \vektor{-4 \\ 4}[/mm]

Warum das so ist, solltest du selbst sehen können (frag dich mal, warum du da x geschrieben hast).

  

> Mh nun hab ich das richtig überlegt mit den Fällen?
>  p=2  4*(h(p-2),h(2-p))'=(0,0)
> p<2  [mm] 4*(h(p-2),h(2-p))'=4*(2\red{p},0) [/mm]  
> p>2  [mm] 4*(h(p-2),h(2-p))'=4*(0,2\red{p}) [/mm]

Jop, bis auf die Tatsache, daß du anstatt nen x nen p hast, ist die Überlegung gut. Und nun soll ja gelten

[mm] \vektor{-4\\4} [/mm] = [mm] \vektor{8p \\0} [/mm] bzw im anderen Fall

[mm] \vektor{-4\\4}= \vektor{0\\8p}. [/mm] Naja, warum das nicht gilt, sollte ja klar sein.

MfG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]