www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitung L^2 Funktionen
Ableitung L^2 Funktionen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung L^2 Funktionen: Ableitung L^2 Funktionen in L^
Status: (Frage) beantwortet Status 
Datum: 03:12 Mi 03.07.2019
Autor: lenz

Hallo
Ich hätte eine kurze allgemeine Frage: Sind die Ableitungen von Funktionen aus [mm] \IL^2 [/mm] (quadratintegrierbare Funktionen) bzw. [mm] \IL^1 [/mm] (integrierbare Funktionen) ebenfalls in [mm] \IL^2 [/mm] oder [mm] \IL^1 [/mm] ?
Ich hatte zunächst intuitiv gedacht ja, weil für Funktionen, die im unendlichen hinreichend schnell abfallen, ja deren Steigung auch irgendwie gegen 0 gehen müsste, jetzt bin ich aber unsicher geworden, weil ich nichts dazu gefunden habe. Bspw. für eine oszillierende Funktion, die gegen 0 geht, könnte die Ableitung größer 0 bleiben, oder?
Wenn mir jemand eine kurze Antwort oder ein Gegenbeispiel sagen könnte, wäre ich dankbar.
Gruß Lennart

        
Bezug
Ableitung L^2 Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:17 Mi 03.07.2019
Autor: fred97


> Hallo
>  Ich hätte eine kurze allgemeine Frage: Sind die
> Ableitungen von Funktionen aus [mm]\IL^2[/mm] (quadratintegrierbare
> Funktionen) bzw. [mm]\IL^1[/mm] (integrierbare Funktionen) ebenfalls
> in [mm]\IL^2[/mm] oder [mm]\IL^1[/mm] ?
>  Ich hatte zunächst intuitiv gedacht ja, weil für
> Funktionen, die im unendlichen hinreichend schnell
> abfallen, ja deren Steigung auch irgendwie gegen 0 gehen
> müsste, jetzt bin ich aber unsicher geworden, weil ich
> nichts dazu gefunden habe. Bspw. für eine oszillierende
> Funktion, die gegen 0 geht, könnte die Ableitung größer
> 0 bleiben, oder?
>  Wenn mir jemand eine kurze Antwort oder ein Gegenbeispiel
> sagen könnte, wäre ich dankbar.
>  Gruß Lennart


Sei [mm] $f(x)=\sqrt{x}.$ [/mm] Dann ist $f [mm] \in \IL^2(0,1)$ [/mm] und $f'(x)= [mm] \frac{1}{2 \sqrt{x}}.$ [/mm]

Dann haben wir $f' [mm] \notin \IL^2(0,1)$ [/mm] , denn das Integral [mm] $\int_0^1 \frac{1}{x} [/mm] dx$ is divergent.



Bezug
                
Bezug
Ableitung L^2 Funktionen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:56 Mi 03.07.2019
Autor: lenz

Hallo
Danke für die Antwort. Sorry, ich hatte die Frage etwas ungenau formuliert.
Es geht speziell um Wellenfunktionen, genauer Lösungen der Schrödingergl.
im Intervall [mm] -\infty [/mm] bis [mm] \infty. [/mm] Kann man darüber irgendwelche Aussagen machen?
Der Hintergrund ist, dass ich ein Paper bearbeiten soll, in dem bei einer partiellen Intergration ein Faktor [mm] e^{ipx}\Psi'(x)|_{-\infty}^{\infty} [/mm] Null werden soll und ich das Riemann-Lebesgue Lemma anwenden möchte, das aber nur für integrierbare Funktionen [mm] \Psi [/mm] gilt. Die Wellenfunktion [mm] \Psi [/mm] selber ist als [mm] \in \IL^2 [/mm] angenommen. Ich weiß, dass Physiker desweilen [mm] e^{ip\infty}=0 [/mm] setzen. Es wäre aber schöner, es begründen zu können.
Gruß Lennart

Bezug
                        
Bezug
Ableitung L^2 Funktionen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Sa 03.08.2019
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]