Ableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:10 Di 27.09.2011 | Autor: | Mandy_90 |
Aufgabe | Wir betrachten [mm] f:\IC \to \IC [/mm] definiert durch [mm] f(x+i*y)=\bruch{x*y^{2}*(x+i*y)}{x^{2}+y^{4}} [/mm] für z=x+i*y [mm] \not=0 [/mm] und f(0)=0.
Beweisen Sie, dass f in 0 [mm] \in \IC [/mm] keine Ableitung besitzt. Zeigen Sie weiterhin, dass [mm] \limes_{x\rightarrow 0} \bruch{f(z)-f(0)}{z} [/mm] immer existiert, wenn z gegen 0 auf einer festen Geraden 0 [mm] \in [/mm] L [mm] \subset \IC [/mm] konvergiert. |
Hallo,
ich habe die Aufgabe so gelöst:
[mm] \limes_{z\rightarrow 0} \bruch{f(z)-f(0)}{z}=
[/mm]
[mm] \limes_{z\rightarrow 0} \bruch{\bruch{xy^{2}*(x+iy)}{x^{2}+y^{4}}}{x+iy}=\limes_{z\rightarrow 0} \bruch{xy^{2}(x+iy)}{x^{2}+y^{4}}=\bruch{0}{0}. [/mm] Da dieser Ausdruck unbestimmt ist, existiert der Grenzwert nicht und f hat keine Ableitung in 0.
Stimmt das so?
Den zweiten Teil verstehe ich nicht ganz. Ist mit L die x-Achse gmeint und 0 [mm] \in [/mm] L etwa der Punkt (0/0+i*0)?
Hier hab ich leider überhaupt keinen Ansatz.Kann mir jemand weiterhelfen?
Vielen Dank
lg
|
|
|
|
Hallo Mandy,
> Wir betrachten [mm]f:\IC \to \IC[/mm] definiert durch
> [mm]f(x+i*y)=\bruch{x*y^{2}*(x+i*y)}{x^{2}+y^{4}}[/mm] für z=x+i*y
> [mm]\not=0[/mm] und f(0)=0.
> Beweisen Sie, dass f in 0 [mm]\in \IC[/mm] keine Ableitung besitzt.
> Zeigen Sie weiterhin, dass [mm]\limes_{x\rightarrow 0} \bruch{f(z)-f(0)}{z}[/mm]
> immer existiert, wenn z gegen 0 auf einer festen Geraden 0
> [mm]\in[/mm] L [mm]\subset \IC[/mm] konvergiert.
> Hallo,
>
> ich habe die Aufgabe so gelöst:
>
> [mm]\limes_{z\rightarrow 0} \bruch{f(z)-f(0)}{z}=[/mm]
>
> [mm]\limes_{z\rightarrow 0} \bruch{\bruch{xy^{2}*(x+iy)}{x^{2}+y^{4}}}{x+iy}=\limes_{z\rightarrow 0} \bruch{xy^{2}(x+iy)}{x^{2}+y^{4}}[/mm]
Hier kürzt sich doch [mm]x+iy[/mm] raus, es bleibt
[mm]\frac{xy^2}{x^2+y^4}[/mm]
> [mm]=\bruch{0}{0}[/mm].
> Da dieser Ausdruck unbestimmt ist, existiert der Grenzwert
> nicht und f hat keine Ableitung in 0.
Wieso nicht? Das könnte doch alles mögliche sein, wieso nicht ein fester Wert?
> Stimmt das so?
Ich würde es mit dem Folgenkrit. machen.
Bastel dir eine Folge [mm](z_n)_{n\in\IN}=(x_n+iy_n)_{n\in\IN}[/mm] mit [mm]z_n\to 0[/mm], also [mm]x_n+iy_n\to 0+0i[/mm], für die aber [mm]\frac{f(x_n+iy_n)}{x_n+iy_n}[/mm] nicht konvergiert.
Ich würde sagen, da gibt es eine recht einfach gestrickte Folge.
> Den zweiten Teil verstehe ich nicht ganz. Ist mit L die
> x-Achse gmeint und 0 [mm]\in[/mm] L etwa der Punkt (0/0+i*0)?
Ja, gemeint sind wohl "Ursprungsgeraden", aber die Notation bzw. die Formulierung in der Aufgabenstellung finde ich komisch.
> Hier hab ich leider überhaupt keinen Ansatz.Kann mir
> jemand weiterhelfen?
Vllt. hilft dir dieses pdf?
http://mathematik.ph-weingarten.de/~ludwig/Vorlesungen/ws0607/komplexezahlen/Kapitel4.pdf
Kap.4.3
>
> Vielen Dank
> lg
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:19 Mi 28.09.2011 | Autor: | Mandy_90 |
> Hallo Mandy,
>
>
> > Wir betrachten [mm]f:\IC \to \IC[/mm] definiert durch
> > [mm]f(x+i*y)=\bruch{x*y^{2}*(x+i*y)}{x^{2}+y^{4}}[/mm] für z=x+i*y
> > [mm]\not=0[/mm] und f(0)=0.
> > Beweisen Sie, dass f in 0 [mm]\in \IC[/mm] keine Ableitung
> besitzt.
> > Zeigen Sie weiterhin, dass [mm]\limes_{x\rightarrow 0} \bruch{f(z)-f(0)}{z}[/mm]
> > immer existiert, wenn z gegen 0 auf einer festen Geraden 0
> > [mm]\in[/mm] L [mm]\subset \IC[/mm] konvergiert.
> > Hallo,
> >
> > ich habe die Aufgabe so gelöst:
> >
> > [mm]\limes_{z\rightarrow 0} \bruch{f(z)-f(0)}{z}=[/mm]
> >
> > [mm]\limes_{z\rightarrow 0} \bruch{\bruch{xy^{2}*(x+iy)}{x^{2}+y^{4}}}{x+iy}=\limes_{z\rightarrow 0} \bruch{xy^{2}(x+iy)}{x^{2}+y^{4}}[/mm]
>
> Hier kürzt sich doch [mm]x+iy[/mm] raus, es bleibt
>
> [mm]\frac{xy^2}{x^2+y^4}[/mm]
Ja das meinte ich auch, hab mich verschrieben.
>
> > [mm]=\bruch{0}{0}[/mm].
> > Da dieser Ausdruck unbestimmt ist, existiert der Grenzwert
> > nicht und f hat keine Ableitung in 0.
>
> Wieso nicht? Das könnte doch alles mögliche sein, wieso
> nicht ein fester Wert?
>
> > Stimmt das so?
>
> Ich würde es mit dem Folgenkrit. machen.
>
> Bastel dir eine Folge [mm](z_n)_{n\in\IN}=(x_n+iy_n)_{n\in\IN}[/mm]
> mit [mm]z_n\to 0[/mm], also [mm]x_n+iy_n\to 0+0i[/mm], für die aber
> [mm]f(x_n+iy_n)[/mm] nicht konvergiert.
>
> Ich würde sagen, da gibt es eine recht einfach gestrickte
> Folge.
Ich hab es mit der Folge [mm] z_{n}=\bruch{1}{n}+i*\bruch{1}{n} [/mm] versucht. Da konvergiert aber [mm] f(z_{n}) [/mm] ebenfalls gegen 0.
Dann habe ich mir die Folge [mm] z_{n}=(-0.5)^{n}+\bruch{i}{n} [/mm] genommen. Es gilt: [mm] f(z_{n})=\bruch{(-0.5)^{n}*\bruch{1}{n^{2}}*(-0.5^{n}+\bruch{i}{n})}{(-0.5)^{2n}+\bruch{1}{n^{2}}}=1+\bruch{i}{n*(-0.5)^{n}}. [/mm]
Und das konvergiert nicht, denn n konv. nicht, aber [mm] (-0.5)^{n} [/mm] konv. gegen Null.
Da nun [mm] \limes_{z_{n}\rightarrow 0} \bruch{f(z_{n})}{z_{n}} [/mm] nicht existiert, hat f in 0 [mm] \in \IC [/mm] auch keine Ableitung.
Ist das so in Ordnung?
Vielen Dank
lg
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:49 Mi 28.09.2011 | Autor: | Helbig |
Hallo Mandy,
> Dann habe ich mir die Folge [mm]z_{n}=(-0.5)^{n}+\bruch{i}{n}[/mm]
> genommen. Es gilt:
> [mm]f(z_{n})=\bruch{(-0.5)^{n}*\bruch{1}{n^{2}}*(-0.5^{n}+\bruch{i}{n})}{(-0.5)^{2n}+\bruch{1}{n^{2}}}=1+\bruch{i}{n*(-0.5)^{n}}.[/mm]
Es muß heißen:
[mm]f(z_{n})=\bruch{(-0.5)^{n}*\bruch{1}{n^{2}}*(-0.5^{n}+\bruch{i}{n})}{(-0.5)^{2n}+\bruch{1}{n^{[red][/red4}}}[/mm]
Ob das nächste Gleichheitszeichen immer noch stimmt, bezweifel ich. Aber selbst wenn:
> Und das konvergiert nicht, denn n konv. nicht, aber
> [mm](-0.5)^{n}[/mm] konv. gegen Null.
Die Begründung ist falsch, denn [mm] $n\cdot (-0,5)^n$ [/mm] konvergiert sehr wohl, und zwar gegen null. Und hieraus folgt [mm] $\bruch [/mm] i [mm] {n\cdo (-05)^n}\to \infty$. [/mm] Aber Du bist eh auf dem falschen Weg! Du mußt doch [mm] $\lim_{z\to 0} \bruch [/mm] {f(z)} z$ und nicht [mm] $\lim_{z\to 0} [/mm] f(z)$ untersuchen.
Also den Grenzwert von [mm] $f(z)/z=\bruch {xy^2}{x^2+y^4}$ [/mm] für [mm] $z\to [/mm] 0$ bzw. für $(x, [mm] y)\to [/mm] (0,0)$.
OK?
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:55 Mo 03.10.2011 | Autor: | Mandy_90 |
Hallo,
ok, ich untersuche den Grenzwert [mm] \limes_{(x,y)\rightarrow (0,0)} \bruch{f(z)}{z}=\limes_{(x,y)\rightarrow (0,0)} \bruch{x*y^{2}}{x^{2}+y^{4}}.
[/mm]
Ich hab dann folgenden Grenzwert untersucht:
[mm] \limes_{(x,y)\rightarrow (\bruch{1}{n},\bruch{1}{n})} \bruch{x*y^{2}}{x^{2}+y^{4}}=\limes_{n\rightarrow\infty} \bruch{1}{n+\bruch{1}{n}} \to [/mm] 0. Aber bei dieser Folge existiert der Grenzwert, ich muss also eine finden bei der er nicht existiert.
Für (x,y) [mm] \to (\bruch{1}{n^{2}},\bruch{1}{n}) [/mm] existiert der Grenzwert [mm] \bruch{1}{2}.
[/mm]
Die vorherige Folge, die ich ausprobiert hatte, bei der existiert der Grenzwert auch. Sonst kenne ich keine Nullfolgen.
Wie find ich denn nun eine Folge, bei der er nicht existiert?
Vielen Dank
lg
|
|
|
|
|
Hallo Mandy,
wenn Du zwei Nullfolgen gefunden hast, für die sich ein unterschiedlicher Grenzwert ergibt, bist Du doch fertig. Damit hast Du doch gezeigt, dass f(z) in 0 nicht ableitbar ist.
> Die vorherige Folge, die ich ausprobiert hatte, bei der
> existiert der Grenzwert auch. Sonst kenne ich keine
> Nullfolgen.
Das mag ich gar nicht so recht glauben. Du kennst doch sicher genügend (reelle) Funktionen, die für [mm] x\to\infty [/mm] gegen Null gehen, oder? Dann kannst Du auch entsprechende Folgen daraus basteln.
Aber wie gesagt, nötig ist es hier nicht mehr.
Grüße
reverend
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:32 Mi 28.09.2011 | Autor: | Helbig |
Hallo,
hattet ihr schon die Cauchy-Riemannschen Differentialgleichungen? Wenn sie in $0$ nicht erfüllt sind, existiert $f'(0)$ nicht.
Mit $L$ ist tatsächlich eine Ursprungsgerade gemeint, das heißt für ein [mm] $z\in\IC$, $z\ne [/mm] 0$, die Menge
[mm] $\{\alpha z\mid \alpha\in\IR\}$.
[/mm]
liebe Grüße,
Wolfgang
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:21 Mi 28.09.2011 | Autor: | Mandy_90 |
Hallo Wolfgang,
> hattet ihr schon die Cauchy-Riemannschen
> Differentialgleichungen? Wenn sie in [mm]0[/mm] nicht erfüllt sind,
> existiert [mm]f'(0)[/mm] nicht.
Wir hatten leider noch überhaupt keine Differentialgleichungen.
lg
|
|
|
|