www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Abgeschlossenheit zeigen
Abgeschlossenheit zeigen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abgeschlossenheit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:21 Di 08.07.2014
Autor: Schachtel5

Hallo

ich hänge manchmal leider an so grundlegenden Stellen fest..

X sei ein kompakter Hausdorffraum. Es existiere eine abgeschlossene Teilmenge D [mm] \subset [/mm] X mit [mm] I=I_D=\{f\in C(X): f_{|D}=0\} [/mm]
Zu zeigen: I ist ein abgeschlossenes Ideal in C(X) (=Raum der komplexwertigen stetigen Funktionen auf X, ausgesattat mit der Supremumsnorm).

Dass I ein Ideal in C(X) ist, konnte ich schon zeigen. Ich wollte nun Abgeschlossenheit zeigen via Folgenabgeschlossenheit zeigen. Dh sei [mm] (f_h)\subseteq I_D [/mm] mit [mm] f_n \to [/mm] f in C(X) für f [mm] \in [/mm] C(X), also es gelte [mm] \|f_n-f\|_{\infty}\to [/mm] 0 für [mm] n\to \infty. [/mm] Zu zeigen: [mm] f\in I_D. [/mm]

Kann man, weil insgesamt gilt [mm] \limes_{n\rightarrow\infty}(sup_{x\in X}|f_n(x)-f(x)| [/mm] )=0 sagen, dass [mm] \limes_{n\rightarrow\infty}(sup_{x\in D\subset X}|f_n(x)-f(x)| [/mm] ) = |f(x)|=0, weswegen f(x)=0 für alle [mm] x\in [/mm] D und daher f [mm] \in I_D [/mm] ? Aber man schaut sich ja nur die Stelle an, an der sich das Supremum des Abstandes befindet. Denke vor allem, dass  deswegen "f(x)=0 für alle [mm] x\in [/mm] D" nicht so gefolgert werden kann.
Kann mir jemand hierbei bei der Abgeschlossenheit helfen?
Liebe Grüße



        
Bezug
Abgeschlossenheit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 04:55 Di 08.07.2014
Autor: fred97


> Hallo
>  
> ich hänge manchmal leider an so grundlegenden Stellen
> fest..
>  
> X sei ein kompakter Hausdorffraum. Es existiere eine
> abgeschlossene Teilmenge D [mm]\subset[/mm] X mit [mm]I=I_D=\{f\in C(X): f_{|D}=0\}[/mm]
>  
> Zu zeigen: I ist ein abgeschlossenes Ideal in C(X) (=Raum
> der komplexwertigen stetigen Funktionen auf X, ausgesattat
> mit der Supremumsnorm).
>
> Dass I ein Ideal in C(X) ist, konnte ich schon zeigen. Ich
> wollte nun Abgeschlossenheit zeigen via
> Folgenabgeschlossenheit zeigen. Dh sei [mm](f_h)\subseteq I_D[/mm]
> mit [mm]f_n \to[/mm] f in C(X) für f [mm]\in[/mm] C(X), also es gelte
> [mm]\|f_n-f\|_{\infty}\to[/mm] 0 für [mm]n\to \infty.[/mm] Zu zeigen: [mm]f\in I_D.[/mm]
>  
> Kann man, weil insgesamt gilt
> [mm]\limes_{n\rightarrow\infty}(sup_{x\in X}|f_n(x)-f(x)|[/mm] )=0
> sagen, dass [mm]\limes_{n\rightarrow\infty}(sup_{x\in D\subset X}|f_n(x)-f(x)|[/mm]
> ) = |f(x)|=0,


Wie kommst Du darauf ????



> weswegen f(x)=0 für alle [mm]x\in[/mm] D und daher f
> [mm]\in I_D[/mm] ? Aber man schaut sich ja nur die Stelle an, an der
> sich das Supremum des Abstandes befindet.


Dieses Supremum muss nicht angenommen werden !!!


> Denke vor allem,
> dass  deswegen "f(x)=0 für alle [mm]x\in[/mm] D" nicht so gefolgert
> werden kann.
>  Kann mir jemand hierbei bei der Abgeschlossenheit helfen?
>  Liebe Grüße
>  
>  


Sei x [mm] \in [/mm] D: Dann ist

  [mm] |f(x)|=|f(x)-f_n(x)| \le \|f_n-f\|_{\infty}\ [/mm]  für alle n

FRED

Bezug
                
Bezug
Abgeschlossenheit zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:29 Di 08.07.2014
Autor: Schachtel5

oh man, danke.. ich glaub, das war gestern nicht mehr meine Uhrzeit.
Danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]