Abgeschlossene Teilmenge < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei A c R abgeschlossene Teilmenge. A enthalte jede rationale Zahl r [0,1]. Zeigen Sie: Dann gilt [0,1] c A |
Hallo!
Die oben angegebene Aufgabe liegt mir vor. Ich würde dies nun zeigen, indem ich folgende Regel anwende:
A c B wird übersetzt mit x A => x B
Auf die Aufgabe übertragen würde das bedeuten:
Wenn [0,1] c A, dann r [0,1] => r A.
Allerdings kommt mir das zu kurz vor und nicht wirklich bewiesen. Kann mir da jmd. weiterhelfen? Danke schon für eine Antwort, Viele Grüße
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:42 Mi 09.04.2008 | Autor: | Marcel |
Hallo,
> Sei A c R abgeschlossene Teilmenge. A enthalte jede
> rationale Zahl r [0,1]. Zeigen Sie: Dann gilt [0,1] c A
> Hallo!
> Die oben angegebene Aufgabe liegt mir vor. Ich würde dies
> nun zeigen, indem ich folgende Regel anwende:
> A c B wird übersetzt mit x A => x B
> Auf die Aufgabe übertragen würde das bedeuten:
> Wenn [0,1] c A, dann r [0,1] => r A.
Du sollst ja eben zeigen:
Ist $r [mm] \in [/mm] [0,1]$, so ist $r [mm] \in [/mm] A$. Das ist ja so noch nicht ganz klar. Was jedenfalls klar ist, ist:
Ist $r [mm] \in [/mm] [0,1] [mm] \cap \IQ$, [/mm] so ist $r [mm] \in [/mm] A$, da [mm] $\overline{X} \subset [/mm] A$ mit [mm] $X:=\{q \in [0,1]: q \in \IQ\}$, [/mm] wobei [mm] $\overline{X}$ [/mm] den Abschluss von $X$ bezeichne.
Aber wenn ich z.B. die irrationale Zahl [mm] $\frac{1}{\sqrt{2}} \in [/mm] [0,1]$ hernehme, die ja nicht in $X$ liegt, warum liegt diese im Abschluss von $X$?
> Allerdings kommt mir das zu kurz vor und nicht wirklich
> bewiesen. Kann mir da jmd. weiterhelfen? Danke schon für
> eine Antwort, Viele Grüße
Nein, Du hast oben eigentlich noch gar nichts bewiesen. Ich würde es, wie oben angedeutet, so machen:
Sei [mm] $X:=\{q \in [0,1]: q \in \IQ\}=[0,1] \cap \IQ$ [/mm] und sei [mm] $\overline{X}$ [/mm] der Abschluss von $X$ in [mm] $\IR$. [/mm] Dann gilt [mm] $\overline{X} \subset [/mm] A$, und wegen $X [mm] \subset \overline{X}$ [/mm] folgt damit
$X [mm] \subset \overline{X} \subset [/mm] A$
Nun zeigen wir $[0,1] [mm] \subset [/mm] A$:
Sei dazu $r [mm] \in [/mm] [0,1]$ beliebig. Nun gibt es zwei Fälle:
1. Fall:
Sei $r [mm] \in \IQ$ [/mm] (also $r [mm] \in \IQ \cap [/mm] [0,1]=X$). Dann ist $r [mm] \in [/mm] X [mm] \subset \overline{X} \subset [/mm] A$ und damit $r [mm] \in [/mm] A$. Das ist ziemlich banal.
Das Wesentliche ist der
2. Fall:
Sei $r [mm] \notin \IQ$, [/mm] also $r [mm] \in [/mm] [0,1] [mm] \cap (\IR \setminus \IQ)$...
[/mm]
Jetzt kann man mit verschiedenen Kenntnissen argumentieren, dass auch ein irrationales $r$ aus $[0,1]$ in $A$ liegen muss. Z.B. ist $([0,1],|.|)$ ein metrischer Raum. Den Abschluss von $X [mm] \subset [/mm] [0,1]$ erhält man dann, indem man den Grenzwert einer jeden in $[0,1]$ konvergenten Folge [mm] $(a_n)_{n \in \IN}$ [/mm] aus $X$ hinzunimmt (das folgt aus einem Satz der Analysis).
Also könnte man oben z.B. sagen:
Ist $r [mm] \in [/mm] [0,1]$ irrational, so werden wir begründen:
Es existiert eine Folge [mm] $(r_n)_{n \in \IN}$ [/mm] mit [mm] $r_n \in [/mm] [0,1] [mm] \cap \IQ$ [/mm] $(n [mm] \in \IN)$, [/mm] so dass [mm] $r_n \to [/mm] r$ bei $n [mm] \to \infty$. [/mm] Und das folgt z.B. wegen der Dichtheit von [mm] $\IQ$ [/mm] in [mm] $\IR$.
[/mm]
Ansonsten müßtest Du uns halt einfach mal mitteilen, wie ihr den Abschluss einer Teilmenge von [mm] $\IR$ [/mm] definiert habt, denn da gibt es viele Möglichkeiten (die natürlich alle äquivalent sind), etwa wie oben "mittels Folgen", oder aber topologisch...
Gruß,
Marcel
|
|
|
|