www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - Abbildung - Ebene
Abbildung - Ebene < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung - Ebene: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:01 So 12.06.2011
Autor: WhiteKalia

Aufgabe
Gegeben sei die x, y - Ebene des [mm] \IR^3 [/mm] mit: E = [mm] \{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \IR^3 | z = 0 \} [/mm]

a) Formulieren Sie eine allgemeine Abbildungsvorschrift für die Spiegelung an der x, y - Ebene.
D.h.: Geben Sie den Vektor an, den man durch Spiegelung des Vektors [mm] \begin{pmatrix} x \\ y \\ z \end{pmatrix} [/mm] an der x, y - Ebene erhält.

b) Zeigen Sie, das die Spiegelung an der x, y - Ebene eine lineare Abbildung ist.

c) Geben Sie die Koeffizientenmatrix der linearen Abbildung an.

d) Entscheiden Sie, ob diese Abbildung injektiv, surjektiv oder bijektiv ist (kurze Begündung genügt).

Meine Frage wäre jetzt: Wie geht das?^^
Ich habe leider absolut keinen Plan davon wie ich da rangehen soll.
Ich mein d) wäre ja klar wenn ich die anderen Aufgaben lösen könnte. Ich kann mir schon unter x,y - Ebene nichts vorstellen. Heißt das jetzt x = y - Ebene?
Danke schonmal.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abbildung - Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 So 12.06.2011
Autor: angela.h.b.


> Gegeben sei die x, y - Ebene des [mm]\IR^3[/mm] mit: E =
> [mm]\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \IR^3 | z = 0 \}[/mm]
>  
> a) Formulieren Sie eine allgemeine Abbildungsvorschrift
> für die Spiegelung an der x, y - Ebene.
>  D.h.: Geben Sie den Vektor an, den man durch Spiegelung
> des Vektors [mm]\begin{pmatrix} x \\ y \\ z \end{pmatrix}[/mm] an
> der x, y - Ebene erhält.
>  
> b) Zeigen Sie, das die Spiegelung an der x, y - Ebene eine
> lineare Abbildung ist.
>  
> c) Geben Sie die Koeffizientenmatrix der linearen Abbildung
> an.
>  
> d) Entscheiden Sie, ob diese Abbildung injektiv, surjektiv
> oder bijektiv ist (kurze Begündung genügt).
>  Meine Frage wäre jetzt: Wie geht das?^^
>  Ich habe leider absolut keinen Plan davon wie ich da
> rangehen soll.

Hallo,

aber Deine Fantasie wird doch ausreichen dafür, Dir eine Spiegelung an der xy-Ebene vorzustellen.

a. Was passiert denn bei Siegelung an dieser Ebene mit dem Punkt (1,2,3)?
b. Was ist eine lineare Abbildung?
c. Wie stellt man die Darstellungsmatrix auf?

Gruß v. Angela

>  Ich mein d) wäre ja klar wenn ich die anderen Aufgaben
> lösen könnte. Ich kann mir schon unter x,y - Ebene nichts
> vorstellen. Heißt das jetzt x = y - Ebene?
>  Danke schonmal.
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Abbildung - Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:12 So 12.06.2011
Autor: WhiteKalia

Ach verdammt.^^
Ich hab "Ebene" mit "Achse" verwechselt. Jetzt ist das natürlich viel klarer.^
Danke nochmal und sry.^^


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]