www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - 5 Vektoren Basis des R^3?
5 Vektoren Basis des R^3? < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

5 Vektoren Basis des R^3?: Frage
Status: (Frage) beantwortet Status 
Datum: 15:39 So 24.04.2005
Autor: Max_well

Hallo,

Warum können 5 Vektoren keine Basis des [mm] R^3 [/mm] bilden?

Ich kann mir das irgendwie nicht vorstellen. Basis des [mm] R^n [/mm] heißt ja, dass die Vektoren ein linearunabhängiges Erzeugendensystem bilden müssen. Also ein Erzeugendensystem des [mm] R^3 [/mm] können 5 Vektoren ja anscheinend  bilden, aber dann müssten 5 Vektoren ja immer linear abhängig sein - oder wie? Warum?

Hoffe auf Antwort - Max_Well


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
5 Vektoren Basis des R^3?: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 So 24.04.2005
Autor: Stefan

Hallo Max!

Eine Basis ist ja ein linear unabhängiges Erzeugendensystem. Dies ist gleichbedeutend damit, dass es sich um ein minimales Erzeugendensystem und eine maximal linear unabhängige Familie handelt (d.h. jedes größere Erzeugendensystem ist linear abhängig und jede kleinere linear unabhängige Familie kein Erzeugendensystem). Die Länge einer Basis in einem Vektorraum ist somit eindeutig bestimmt.

Da [mm] $((1,0,0)^T,(0,1,0)^T,(0,0,1)^T)$ [/mm] (die sogenannte kanonische Basis des [mm] $\IR^3$) [/mm] offensichtlich ein linear unabhängiges Erzeugendensystem, also eine Basis bildet, kann es keine Basis des [mm] $\IR^3$ [/mm] einer anderen Länge als $3$ geben.

Offenbar kann man dies verallgemeinern: Ist [mm] $\IK$ [/mm] ein beliebiger Körper, so bilden die $n$ kanonischen Einheitsvektoren (die Vektoren mit einer $1$ und dem Rest $0$en) eine Basis des [mm] $\IK^n$. [/mm] Daher gilt: [mm] $\dim(\IK^n)=n$, [/mm] und jede Basis des [mm] $\IK^n$ [/mm] hat die Länge $n$.

Liebe Grüße
Stefan



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]