www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - 3Fach verkettete Funktion
3Fach verkettete Funktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

3Fach verkettete Funktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:51 Sa 05.05.2012
Autor: ionenangrif

Aufgabe
Leiten Sie ab:

[mm] ln(x^2)^0^.^5 [/mm]

Mein anstaz:

ich möchte von innen nach außen gehen, aber ich weiß nicht wie ich die potenzfunktion einordnen soll, das macht mich ganz verrückt!
Ich vermute, bei mir ist der 3. Term falsch!

-->  2x * [mm] 1/(x^2) [/mm] *  ( [mm] 0.5*(x^2))^-^0^.^5 [/mm] )

Kann mir bitte Jemand, wie man diese Ableitung angeht, Sie verdreht mir den Kopf!

        
Bezug
3Fach verkettete Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:18 Sa 05.05.2012
Autor: Diophant

Hallo,

ist das so gemeint (der Schreibweise nach wäre das jedenfalls die naheliegende Deutung):

[mm] f(x)=\wurzel{ln(x^2)} [/mm]

?

Dann wäre in der Tat dein dritter Faktor flasch: diort muss ja die äußerste Funktion abgeleitet werden, d.h., da musst du das [mm] x^2 [/mm] noch in den Logarithmus packen.

Mit der Anwendung des entsprechenden Logarithmengesetzes geht das aber viel einfacher:

[mm] \wurzel{ln(x^2)}=\wurzel{2*ln(x)} [/mm]

Dann hättest du mal das Quadrat los...


Gruß, Diophant


Bezug
                
Bezug
3Fach verkettete Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:50 Sa 05.05.2012
Autor: ionenangrif

Aufgabe
leiten sie ab

$ [mm] f(x)=ln\wurzel{(x^2)} [/mm] $

also sorry nochaml für die unübersichtliche Schreibweise.

Es ist so gemeint wie ich das grade oben geschrieben habe.

Zur Übersicht hatte ich aber die wurzel umgewandelt.

Bezug
                        
Bezug
3Fach verkettete Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:52 Sa 05.05.2012
Autor: Diophant

Hallo,

> leiten sie ab
> [mm]f(x)=ln\wurzel{(x^2)}[/mm]
>
> also sorry nochaml für die unübersichtliche
> Schreibweise.
>
> Es ist so gemeint wie ich das grade oben geschrieben habe.
>
> Zur Übersicht hatte ich aber die wurzel umgewandelt.

Das ergibt irgendwie keinen Sinn: es ist

[mm] \wurzel{x^2}=|x| [/mm]


das wäre zum einen in Sachen Schreibweise unüblich und auch deinen Ansatz würde es überhaupt niocht erklären. Sicher, dass es nicht doch meine Version sein soll? ;-)


Gruß, Diophant  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]