www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mechanik" - 1-D Potential, Kreisfrequenz
1-D Potential, Kreisfrequenz < Mechanik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1-D Potential, Kreisfrequenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Fr 18.11.2011
Autor: timgkeller

Aufgabe
Betrachten Sie das eindimensionale Potential
     V(x) = [mm] -\bruch{\alpha}{x}+\bruch{\beta}{x^{2}}, \alpha, \beta [/mm] > 0
für x > 0. Berechnen Sie die ersten zwei Terme der Taylor-Entwicklung des Potentials um das Minimum. Berechnen Sie anschließend die Kreisfrequenz [mm] \omega [/mm] der Schwingung eines Teilchens der Masse m bei kleinen Auslenkungen um die Ruhelage.

Hallo,

leider komme ich bei dieser Aufgabe nicht weiter und brauche etwas Hilfe. Für den ersten Aufgabenteil habe ich bereits
[mm] P_{V}(x)=\bruch{1}{16}\bruch{\alpha^{4}}{\beta^{3}}x^{2}-\bruch{1}{4}\bruch{\alpha^{3}}{\beta^{2}}x [/mm]
heraus bekommen.
Bei der Frage nach der Kreisfrequenz weiß ich jedoch nicht Ahnung, wie ich da ran gehen muss.

Für Hilfe wäre ich sehr dankbar!

Gruß Tim

        
Bezug
1-D Potential, Kreisfrequenz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Fr 18.11.2011
Autor: Hasenfuss

Hossa :)

Du hast dich vermutlich bei der Berechnung des genäherten Potentials V(x) vertan. Hast du berücksichtigt, dass man um das Minimum herum entwickeln soll? Vorgegeben ist:

[mm] $V(x)=-\frac{\alpha}{x}+\frac{\beta}{x^2}\quad;\quad\alpha,\beta,x>0$ [/mm]

Für die Taylor-Näherung werden die ersten beiden Ableitungen benötigt:

[mm] $V(x)=-\alpha x^{-1}+\beta x^{-2}$ [/mm]

[mm] $V^\prime(x)=\alpha x^{-2}-2\beta x^{-3}$ [/mm]

[mm] $V^{\prime\prime}(x)=-2\alpha x^{-3}+6\beta x^{-4}$ [/mm]

Der Entwicklungspunkt x0 soll das Minimum des Potentials sein, also gilt:

[mm] $V(x_0)=0\;\Longrightarrow\;\alpha x_0^{-2}=2\beta x_0^{-3}\;\Longrightarrow\;\alpha x_0=2\beta\;\Longrightarrow\; x_0=\frac{2\beta}{\alpha}$ [/mm]

Bezeichnen wir die Auslenkung aus dieser Ruhelage mit s, so lautet die gesuchte Taylor-Näherung:

[mm] $V(x=x_0+s)=V(x_0)+V^\prime(x_0)\,s+\frac{1}{2}V^{\prime\prime}(x_0)\,s^2$ [/mm]

Die oben bestimmte Ruhelage x0Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

eingesetzt ergibt:

$V(x_0)=-\frac{\alpha^2}{4\beta}\quad;\quad V^\prime(x_0)=0\quad;\quad V^{\prime\prime}(x_0)=\frac{\alpha^4}{8\beta^3}$

Also lautet die Näherung der Potentials für kleine Auslenkungen s aus der Ruhelage:

$V(s)\approx-\frac{\alpha^2}{4\beta}+\frac{\alpha^4}{16\beta^3}\,s^2$

Im zweiten Teil der Aufgabe soll die Kreisfrequenz ω der Schwingung bestimmt werden. Dazu berechnet man zunächst die Kraft, die auf das Objekt wirkt:

$F(s)=-\frac{dV}{ds}=-\frac{\alpha^4}{8\beta^3}\,s$

Nach dem zweiten Newton'schen Axiom gilt:

$m\ddot s=F(s)=-\frac{\alpha^4}{8\beta^3}\,s$

Zur Berechnung der Kreisfrequenz ω gehen wir mit dem einfachsten möglichen Ansatz an die Lösung der Differentialgleichung:

$s(t)=A\,e^{i\omega t}$

$\dot s(t)=i\omega A\,e^{i\omega t}=i\omega\,s(t)$

$\ddot s(t)=-\omega^2A\,e^{i\omega t}=-\omega^2\,s(t)$

Eingesetzt in die Differentialgleichung folgt:

$m\cdot(-\omega^2\,s)=-\frac{\alpha^4}{8\beta^3}\,s\quad\left|\,:s\right.$

$-m\omega^2=-\frac{\alpha^4}{8\beta^3}$

$\omega=\sqrt{\frac{\alpha^4}{8\beta^3\,m}}$

Viele Grüße

Hasenfuss

Bezug
                
Bezug
1-D Potential, Kreisfrequenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:49 Fr 18.11.2011
Autor: timgkeller

Hey,

erstmal nen riesen Dank für deine Mühe!

Ich habe V(x) anderes als du, weil ich s = (x - [mm] \bruch{2\beta}{\alpha}) [/mm] noch ausmultipliziert habe. Aber das ist scheinbar nicht gewünscht...

Ich versuche jetzt erst mal zu verstehen, wie du vorgegangen bist und frage dann evtl. noch einmal nach!

Gruß Tim

Bezug
                
Bezug
1-D Potential, Kreisfrequenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:34 Sa 19.11.2011
Autor: timgkeller

Hey,

also ich denke ich habe soweit alles verstanden. Jedoch finde ich nicht heraus, woher du diese Gleichung hast:

[mm]s(t)=A\,e^{i\omega t}[/mm]

Wenn du mir das noch kurz erklären könntest, wäre ich dir sehr dankbar!

Gruß Tim

Bezug
                        
Bezug
1-D Potential, Kreisfrequenz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Sa 19.11.2011
Autor: chrisno

Das ist der allgemeine Ansatz für eine harmonische Schwingung. So wie die Aufgabe formuliert ist, kannst Du auch [mm]s(t)=A\,\sin(\omega t)[/mm] nehmen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]