www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - -1 Quadratischer Rest
-1 Quadratischer Rest < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

-1 Quadratischer Rest: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:49 Di 09.11.2010
Autor: daN-R-G

Hallo!

Ich habe da mal ne Frage, die mich grad ein wenig verstutzt: Auf Wikipedia (http://de.wikipedia.org/wiki/Primzahl) steht folgendes:

"Die Zahl −1 ist ein quadratischer Rest modulo jeder Primzahl der Form 4k+1 und quadratischer Nichtrest modulo jeder Primzahl der Form 4k+3."

Das bedeutet ja, dass gilt: [mm] x^2 \equiv [/mm] -1 [mm] \mod{p} \gdw [/mm] p | [mm] x^2 [/mm] + 1

Nun ist 13 = 4k+1 mit k = 3, aber 13 teilt doch kein [mm] x^2+1 [/mm] mit x [mm] \in \IZ. [/mm] Ist der Eintrag an der Stelle einfach nur falsch, oder übersehe ich was?
Für die Zahlen 5 bzw. 17 z.B. funktioniert das ganze dagegen wunderbar, da [mm] 5|2^2+1 [/mm] und [mm] 17|4^2+1 [/mm] Ich denke, dass ich irgendwas übersehe...

Wann genau ist denn dann immer -1 ein QR [mm] \mod{p} [/mm] ?

        
Bezug
-1 Quadratischer Rest: Wikipedia hat schon recht
Status: (Antwort) fertig Status 
Datum: 15:13 Di 09.11.2010
Autor: moudi


> Hallo!
>  
> Ich habe da mal ne Frage, die mich grad ein wenig
> verstutzt: Auf Wikipedia
> (http://de.wikipedia.org/wiki/Primzahl) steht folgendes:
>  
> "Die Zahl −1 ist ein quadratischer Rest modulo jeder
> Primzahl der Form 4k+1 und quadratischer Nichtrest modulo
> jeder Primzahl der Form 4k+3."
>  
> Das bedeutet ja, dass gilt: [mm]x^2 \equiv[/mm] -1 [mm]\mod{p} \gdw[/mm] p |
> [mm]x^2[/mm] + 1
>  
> Nun ist 13 = 4k+1 mit k = 3, aber 13 teilt doch kein [mm]x^2+1[/mm]
> mit x [mm]\in \IZ.[/mm] Ist der Eintrag an der Stelle einfach nur

Doch nimm x=5. Es wird nicht behauptet das [mm] $13=x^2+1$. [/mm]

> falsch, oder übersehe ich was?
>  Für die Zahlen 5 bzw. 17 z.B. funktioniert das ganze
> dagegen wunderbar, da [mm]5|2^2+1[/mm] und [mm]17|4^2+1[/mm] Ich denke, dass
> ich irgendwas übersehe...
>  
> Wann genau ist denn dann immer -1 ein QR [mm]\mod{p}[/mm] ?

mfG Moudi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]