www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Stetigkeit
Stetigkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Stetig mit Konvergenz
Status: (Frage) beantwortet Status 
Datum: 17:51 Mi 01.12.2004
Autor: semmel

Hallo Mathefreaks,
Ich hab hier eine UAfgabe zus Stetigkeit von Folgen, die ich nicht versteh, und die bitte jemand für mich erklären möchte, falls er mag.
Sei M [mm] \subseteq \IC [/mm] und f: M  [mm] \to [/mm] M stetig. Wir wählen  [mm] x_{0} \in [/mm] M und setztn rekursiv  [mm] x_{n+1} [/mm] = f( [mm] x_{n}) [/mm] für ein n [mm] \in \IN. [/mm] Man soll nun zeigen, dass wenn die Folge ( [mm] x_{n}) [/mm] gegen einen Punkt x [mm] \in [/mm] M konvergiert, dann gilt f(x) = x.
Muss man das nicht irgendwie mit der epsilon-Umgebung zeigen?
Ich danke im Voraus für eine nette Hilfe.
semmel
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Stetigkeit: Folgenstetigkeit
Status: (Antwort) fertig Status 
Datum: 19:09 Mi 01.12.2004
Autor: Gnometech

Grüße!

Es gibt eine zum [mm] $\varepsilon-\delta$-Kriterium [/mm] äquivalente Formulierung der Stetigkeit:

Wenn eine Funktion $f: X [mm] \to [/mm] Y$ stetig ist und [mm] $(x_n)_{n \in \IN}$ [/mm] eine gegen $x [mm] \in [/mm] X$ konvergente Folge ist, dann gilt:

[mm] $\lim_{n \to \infty} f(x_n) [/mm] = f (x)$

Das gilt immer in metrischen Räumen (insbesondere in [mm] $\IR$ [/mm] und [mm] $\IC$, [/mm] falls Dir der Begriff eines metrischen Raumes nichts sagt). Es bedeutet einfach, dass Stetigkeit am Punkt $a$ auch formuliert werden kann durch: für jede Folge, die gegen $a$ konvergiert, konvergiert die Folge der Bildpunkte gegen den Bildpunkt von $a$.

Mit dieser Information ist die Aufgabe ein Einzeiler. Viel Vergnügen!

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]