www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Eulersches Polygonzugverfahren
Eulersches Polygonzugverfahren < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eulersches Polygonzugverfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:49 Mo 27.01.2020
Autor: sina10


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Guten Nachmittag.



Ich möchte gerne mit dem Eulerschen Polygunzugverfahren die Lösung der DGL $y ' [mm] \cdot [/mm] y + x = 0$ mit $y'(0) = 5$ approximieren.

Ist bestimmt nicht schwer, aber bin mit dem Verfahren noch nicht so vertraut.


Meine Vorgehensweise ist folgende:




1.) Stelle DGL nach $y'$ um


$y ' [mm] \cdot [/mm] y + x = 0$ mit $y'(0) = 5$ [mm] $\Leftrightarrow [/mm] y ' = - [mm] \frac{x}{y}$ [/mm]



2.) Wähle Schrittweite $h$  aus



Die Schrittweite setze ich mal bei $h = 1$.


Die Rekursionsformel lautet in diesem Fall dann: [mm] $y_{n} [/mm] = [mm] y_{n - 1} [/mm] + h [mm] \cdot f(t_{n - 1}, y_{n - 1}) [/mm] = [mm] y_{n - 1} [/mm] - [mm] \frac{t_{n - 1}}{y_{n - 1}}$, [/mm] $n = 1, [mm] \ldots, [/mm] N$.

Setze $N = 3$


3.) Führe Rekursionsformel für $N = 3$ aus.



Für $n = 1$: [mm] $y_{1} [/mm] = [mm] y_{0} [/mm] - [mm] \frac{t_{0}}{y_{0}} [/mm] = 5 - [mm] \frac{0}{5} [/mm]  = 5$  

Für $n = 2$: [mm] $y_{2} [/mm] = [mm] y_{1} [/mm] - [mm] \frac{t_{1}}{y_{1}} [/mm] = 5 - [mm] \frac{1}{5} [/mm]  = 4.8$  

Für $n = 3$: [mm] $y_{3} [/mm] = [mm] y_{2} [/mm] - [mm] \frac{t_{2}}{y_{2}} [/mm] = 4.8 - [mm] \frac{2}{4.8} [/mm]  = 4.38$  



Das Ergebnis wird wahrscheinlich sehr ungenau sein, aber trotzdem.


Meine Frage ist nun: Wie bestimme ich die approximierte Lösung der obigen DGL ? Weil bis jetzt habe ich nur Zahlen [mm] $y_{1}, y_{2}$ [/mm] und [mm] $y_{3}$ [/mm] berechnet.


Aber wie bestimmt man daraus die approximierte Lösung der DGL ?




Freue mich auf eure Antworten.

Schönen Tag noch :)


        
Bezug
Eulersches Polygonzugverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 07:17 Di 28.01.2020
Autor: Gonozal_IX

Hiho,

> Meine Frage ist nun: Wie bestimme ich die approximierte
> Lösung der obigen DGL ? Weil bis jetzt habe ich nur Zahlen
> [mm]y_{1}, y_{2}[/mm] und [mm]y_{3}[/mm] berechnet.
>  
>
> Aber wie bestimmt man daraus die approximierte Lösung der
> DGL ?

Diese Zahlen sind deine approximierte Lösung… das explizite Euler-Verfahren ist ein numerisches Verfahren, d.h. du approximierst die Lösung, in dem du einzelne Werte berechnest und diese dann verbindest. Das siehst du schon daran, dass deine Rekursionsformel dir exakt N Punkte liefert.
D.h. formal könnte man das N-Tupel [mm] $((t_0,y_0), (t_1,y_1), \ldots,(t_N,y_N))$ [/mm] als "approximierte Lösung der DGL" bezeichnen.

Heißt: Plotte deine Lösung und du bist "fertig".

Wenn du wirklich eine Funktion als Lösung haben willst, könntest du nun noch versuchen durch die errechneten N Punkte eine Funktion zu legen, z.B. durch Polynominterpolation.
Der Aufwand ist aber recht hoch und widerspricht dem Sinn einer numerischen Lösung…

Gruß,
Gono

Bezug
        
Bezug
Eulersches Polygonzugverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 12:33 Di 28.01.2020
Autor: HJKweseleit


>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>
> Guten Nachmittag.
>  
>
>
> Ich möchte gerne mit dem Eulerschen Polygunzugverfahren
> die Lösung der DGL [mm]y ' \cdot y + x = 0[/mm] mit [mm]y'(0) = 5[/mm]
> approximieren.
>  
> Ist bestimmt nicht schwer, aber bin mit dem Verfahren noch
> nicht so vertraut.
>  
>
> Meine Vorgehensweise ist folgende:
>  
>
>
>
> 1.) Stelle DGL nach [mm]y'[/mm] um
>  
>
> [mm]y ' \cdot y + x = 0[/mm] mit [mm]y'(0) = 5[/mm] [mm]\Leftrightarrow y ' = - \frac{x}{y}[/mm]
>  


Nun siehst du: Wenn x=0 ist, muss

a) auch y'=0 sein, also geht y'(0)=5 nicht

oder

b) auch y=0 sein, dann wäre [mm] -\bruch{x}{y} [/mm] unbestimmt und könnte somit auch 5 sein.

Andere Möglichkeiten für y'(0)=5 gibt es nicht.

Bezug
                
Bezug
Eulersches Polygonzugverfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:29 Di 28.01.2020
Autor: sina10

Okay, jetzt verstehe ich das besser! War gestern Nacht voll verwirrt, weil ich nicht wusste, was mir das Verfahren bringen soll...

Ich bedanke mich bei euch:)


Grüße, Sina

Bezug
                        
Bezug
Eulersches Polygonzugverfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:13 Mi 29.01.2020
Autor: HJKweseleit

Bemerkung:

Es handelt sich hier um Kreise um den Ursprung.

aus y*y'+x=0 folgt 2*y*y'+2*x=0 oder [mm] (y^2)'+ [/mm] 2*x=0, also [mm] (y^2)'=-2*x [/mm]

Integriert:

[mm] y^2=-x^2+C. [/mm] Wegen [mm] y^2\ge [/mm] 0 und [mm] x^2\ge [/mm] 0 muss [mm] C\ge x^2 [/mm] sein, insbesondere auch [mm] C\ge [/mm] 0.

Nenne [mm] C=r^2, [/mm] r=konstant, so erhältst du die Gleichung

[mm] y^2=r^2-x^2 [/mm] für einen Kreis. Allerdings ist dann immer für r>0 y'(0)=0 und nie =5.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]